Computing

, Volume 79, Issue 2–4, pp 175–183 | Cite as

Surfaces parametrized by the normals

Article

Abstract

For a surface with non vanishing Gaussian curvature the Gauss map is regular and can be inverted. This makes it possible to use the normal as the parameter, and then it is trivial to calculate the normal and the Gauss map. This in turns makes it easy to calculate offsets, the principal curvatures, the principal directions, etc.

Such a parametrization is not only a theoretical possibility but can be used concretely. One way of obtaining this parametrization is to specify the support function as a function of the normal, i.e., as a function on the unit sphere. The support function is the distance from the origin to the tangent plane and the surface is simply considered as the envelope of its family of tangent planes.

Suppose we are given points and normals and we want a Ck-surface interpolating these data. The data gives the value and gradients of the support function at certain points (the given normals) on the unit sphere, and the surface can be defined by determining the support function as a Ck function interpolating the given values and gradients.

AMS Subject Classifications

65D17 53A05 

Keywords

Gauss map support function surface fitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfeld, P., Neamtu, M., Schumaker, L. L. 1996Fitting scattered data on sphere-like surfaces using spherical splinesJ. Comput. Appl. Math.73543MATHCrossRefMathSciNetGoogle Scholar
  2. Bonnesen, T., Fenchel, W. 1934Theorie der konvexen Körper, Ergebnisse, vol. 3SpringerBerlinGoogle Scholar
  3. Bonnesen, T., Fenchel, W. 1987Theory of convex bodies. Transl. from the German and ed. by L. Boron, C. Christenson and B. Smith, with the collab. of W. FenchelBCS AssociatesMoscow, IdahoMATHGoogle Scholar
  4. Fenchel, W., Jessen, B. 1938Mengenfunktionen und konvexe KörperDanske Vid. Selsk. Math.-Fys. Medd.16131Google Scholar
  5. Gluck, H. 1968Geometric characterization of differentiable manifolds in Euclidean space IIMichigan Math. J.153350MATHCrossRefMathSciNetGoogle Scholar
  6. Gravesen, J., Henriksen, C. 2001The geometry of the scroll compressorSIAM Rev.43113126MATHCrossRefMathSciNetGoogle Scholar
  7. Gravesen, J. 2004

    The intrinsic equation of planar curves and G2 hermite interpolation

    Lucian, M.Neamtu, M. eds. Seattle Geometric Design ProcNashboro PressBrentwood295310
    Google Scholar
  8. Jüttler, B.: Triangular Bézier surface patches with a linear normal vector field. In: The Mathematics of Surfaces VIII (Cripps, R., ed.). Information Geometers 1998, pp. 431–446.Google Scholar
  9. Jüttler, B., Sampoli, M. L. 2000Hermite interpolation by piecewise polynomial surfaces with rational offsetsComput. Aided Geom. Des.17361385MATHCrossRefGoogle Scholar
  10. Lewy, H. 1938On differential geometry in the large. I. Minkowski's problemTrans. Amer. Math. Soc.43258270MATHCrossRefMathSciNetGoogle Scholar
  11. Peternell, M., Pottmann, H. 1998A Laguerre geometric approach to rational offsetsComput. Aided Geom. Des.15223249MATHCrossRefMathSciNetGoogle Scholar
  12. Pottmann, H. 1995Rational curves and surfaces with rational offsetsComput. Aided Geom. Des.12175192MATHCrossRefMathSciNetGoogle Scholar
  13. Pottmann, H., Wallner, J. 2001Computational line geometrySpringerHeidelbergMATHGoogle Scholar
  14. Sabin, M.: A class of surfaces closed under five important geometric operations. VTO/MS report 207, 1974. http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtoms207.ps.gzGoogle Scholar
  15. Sampoli, M. L., Peternell, M., Jüttler, B. 2006Rational surfaces with linear normals and their convolutions with rational surfacesComput. Aided Geom. Des.23179192MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2007

Authors and Affiliations

  1. 1.Department of MathematicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations