Computing

, Volume 79, Issue 2–4, pp 175–183

Surfaces parametrized by the normals

Article

Abstract

For a surface with non vanishing Gaussian curvature the Gauss map is regular and can be inverted. This makes it possible to use the normal as the parameter, and then it is trivial to calculate the normal and the Gauss map. This in turns makes it easy to calculate offsets, the principal curvatures, the principal directions, etc.

Such a parametrization is not only a theoretical possibility but can be used concretely. One way of obtaining this parametrization is to specify the support function as a function of the normal, i.e., as a function on the unit sphere. The support function is the distance from the origin to the tangent plane and the surface is simply considered as the envelope of its family of tangent planes.

Suppose we are given points and normals and we want a Ck-surface interpolating these data. The data gives the value and gradients of the support function at certain points (the given normals) on the unit sphere, and the surface can be defined by determining the support function as a Ck function interpolating the given values and gradients.

65D17 53A05

Keywords

Gauss map support function surface fitting

Preview

References

1. Alfeld, P., Neamtu, M., Schumaker, L. L. 1996Fitting scattered data on sphere-like surfaces using spherical splinesJ. Comput. Appl. Math.73543
2. Bonnesen, T., Fenchel, W. 1934Theorie der konvexen Körper, Ergebnisse, vol. 3SpringerBerlinGoogle Scholar
3. Bonnesen, T., Fenchel, W. 1987Theory of convex bodies. Transl. from the German and ed. by L. Boron, C. Christenson and B. Smith, with the collab. of W. FenchelBCS AssociatesMoscow, Idaho
4. Fenchel, W., Jessen, B. 1938Mengenfunktionen und konvexe KörperDanske Vid. Selsk. Math.-Fys. Medd.16131Google Scholar
5. Gluck, H. 1968Geometric characterization of differentiable manifolds in Euclidean space IIMichigan Math. J.153350
6. Gravesen, J., Henriksen, C. 2001The geometry of the scroll compressorSIAM Rev.43113126
7. Gravesen, J. 2004

The intrinsic equation of planar curves and G2 hermite interpolation

Lucian, M.Neamtu, M. eds. Seattle Geometric Design ProcNashboro PressBrentwood295310
8. Jüttler, B.: Triangular Bézier surface patches with a linear normal vector field. In: The Mathematics of Surfaces VIII (Cripps, R., ed.). Information Geometers 1998, pp. 431–446.Google Scholar
9. Jüttler, B., Sampoli, M. L. 2000Hermite interpolation by piecewise polynomial surfaces with rational offsetsComput. Aided Geom. Des.17361385
10. Lewy, H. 1938On differential geometry in the large. I. Minkowski's problemTrans. Amer. Math. Soc.43258270
11. Peternell, M., Pottmann, H. 1998A Laguerre geometric approach to rational offsetsComput. Aided Geom. Des.15223249
12. Pottmann, H. 1995Rational curves and surfaces with rational offsetsComput. Aided Geom. Des.12175192
13. Pottmann, H., Wallner, J. 2001Computational line geometrySpringerHeidelberg
14. Sabin, M.: A class of surfaces closed under five important geometric operations. VTO/MS report 207, 1974. http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtoms207.ps.gzGoogle Scholar
15. Sampoli, M. L., Peternell, M., Jüttler, B. 2006Rational surfaces with linear normals and their convolutions with rational surfacesComput. Aided Geom. Des.23179192