Advertisement

Computing

, Volume 78, Issue 3, pp 251–276 | Cite as

Interval Arithmetic with Containment Sets

  • J. D. Pryce
  • G. F. Corliss
Article

Abstract

The idea of containment sets (csets) is due to Walster and Hansen, and the theory is mainly due to the first author. Now that floating point computation with infinities is widely accepted, it is necessary to achieve the same for interval computation. The cset of a function over a set in its domain space is the set of all limits of normal function values over that set. Csets form a sound basis for defining a number of practical models for interval arithmetic that handle division by zero and related operations in an intuitive and consistent manner. Cset-based systems offer new opportunities for compiler optimization by rearranging interval expressions, achieving tighter bounds by reducing dependencies within the expression. This paper presents basic theory. It discusses division by zero, the case for a global flag to support ``loose'' evaluation, performance, and semantics. It presents numerical examples using a trial Matlab implementation.

AMS Subject Classifications

65-02 65G30 65G40 54D35 

Keywords

Interval arithmetic validated computation division by zero infinity containment set cset 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American National Standards Institute: IEEE standard for binary floating-point arithmetic, ANSI/IEEE Std. 754–1985. New York, 1985.Google Scholar
  2. American National Standards Institute: Proposed revision of IEEE 754. http://754r.ucbtest.org.Google Scholar
  3. Beeson, M., Wiedijk, F.: The meaning of infinity in calculus and computer algebra systems. In: Proc. Joint Int. Conf. on Artificial Intelligence, Automated Reasoning, and Symbolic Computation, pp. 246–258. Springer 2002.Google Scholar
  4. Kahan, W. M.: A more complete interval arithmetic. Lecture Notes for a Summer Course at the University of Michigan, 1968.Google Scholar
  5. Kearfott, R. B., Dawande, M., Du, K.-S., Hu, C.-Y.: Algorithm 737: INTLIB, a portable FORTRAN 77 interval standard function library. ACM Trans. Math. Software 20(4), 447–459, December 1994.Google Scholar
  6. Knüppel, O.: BIAS – basic interval arithmetic subroutines. Technical Report 99.3, Berichte des Forschungsschwerpunktes Informations- und Kommunikationstechnik, Technische Universität Hamburg-Harburg, 1993.Google Scholar
  7. Lambov, B.: Talk at Dagstuhl seminar 06021, January 2006. BRICS, Department of Computer Science, University of Aarhus, Denmark (barnie@brics.dk).Google Scholar
  8. Lerch, M., Tischler, G., Wolff von Gudenberg, J.: FILIB++, a fast interval library supporting containment computations. ACM Trans. Math. Software 32(2), 299–324, June 2006. http://doi.acm.org/10.1145/1141885.1141893.Google Scholar
  9. Moore, R. E. 1966Interval a analysisPrentice-HallEnglewood, N.J.Google Scholar
  10. Pryce, J. D.: An introduction to containment sets. Technical report DoIS/TR01/05, Department of Information Systems, Shrivenham Campus, Cranfield University, Swindon, UK, 2005.Google Scholar
  11. Ratz, D.: Inclusion-isotone extended interval arithmetic – a toolbox update. Institut für Angewandte Mathematik, Univ. Karlsruhe (TH), Germany, 1996. Available at ftp://iamk4515.mathematik.uni-karlsruhe.de/pub/documents/reports.Google Scholar
  12. Rump, S. M.: INTLAB Interval Toolbox, version 5.2. Tech. Univ. Hamburg-Harburg, Germany, 1999–2006. www.ti3.tu-harburg.de/intlab.ps.gz.Google Scholar
  13. Sun Microsystems: Interval arithmetic in the Forte[tm] C++ compiler. www.sun.com/forte/cplusplus/interval/, 2000.Google Scholar
  14. Sun Microsystems: Interval arithmetic in the Forte[tm] Fortran 95 compiler. www.sun.com/forte/ fortran/interval/, 2000.Google Scholar
  15. Winter, L.: Postings to e-discussion group ``For discussions concerning the C++ standardization of intervals'', std-interval@compgeom.poly.edu, March–July 2006. Sharp Software, 5 Bellingrath Place, Nashua, New Hampshire, USA.Google Scholar
  16. Wolff von Gudenberg, J.: Private communication at Dagstuhl seminar 06021, January 2006. Institut für Informatik III, Universität Würzburg, Würzburg, Germany. wolff@informatik.uni-wuerzburg.de.Google Scholar
  17. Zemke, J.: b4m: A free interval arithmetic toolbox for MATLAB. Technical report, Technische Universitaet Hamburg-Harburg, Technische Informatik III, Eissendorfer Str. 38, 21071 Hamburg, Germany, 1998. Available at http://www.ti3.tu-harburg.de/ zemke/b4m/.Google Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Department of Information Systems Shrivenham CampusCranfield UniversitySwindonUK
  2. 2.Electrical and Computer EngineeringMarquette UniversityMilwaukeeUSA

Personalised recommendations