Advertisement

Computing

, Volume 77, Issue 1, pp 57–75 | Cite as

Algebraic Multigrid Based on Computational Molecules, 1: Scalar Elliptic Problems

  • J. K. KrausEmail author
  • J. Schicho
Article

Abstract

We consider the problem of splitting a symmetric positive definite (SPD) stiffness matrix A arising from finite element discretization into a sum of edge matrices thereby assuming that A is given as the sum of symmetric positive semidefinite (SPSD) element matrices. We give necessary and sufficient conditions for the existence of an exact splitting into SPSD edge matrices and address the problem of best positive (nonnegative) approximation.

Based on this disassembling process we present a new concept of ``strong'' and ``weak'' connections (edges), which provides a basis for selecting the coarse-grid nodes in algebraic multigrid methods. Furthermore, we examine the utilization of computational molecules (small collections of edge matrices) for deriving interpolation rules. The reproduction of edge matrices on coarse levels offers the opportunity to combine classical coarsening algorithms with effective (energy minimizing) interpolation principles yielding a flexible and robust new variant of AMG.

AMS Subject Classiffications

65F10 65N20 65N30 

Keywords

Edge matrices algebraic multigrid interpolation weights coarse-grid selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson, O.: Iterative solution methods. Cambridge University Press 1994.Google Scholar
  2. Brandt, A. 1983Algebraic multigrid theory: the symmetric case. Preliminary Proc. Int. Multigrid ConfCopper MountainCOGoogle Scholar
  3. Brandt, A 1986Algebraic multigrid theory: the symmetric caseAppl. Math. Comput.192356CrossRefzbMATHMathSciNetGoogle Scholar
  4. Brandt, A., McCormick, S. F., Ruge, J. W.: Algebraic multigrid (AMG) for automatic multigrid solutions with applications to geodetic computations. Report, Inst. for Computational Studies, Fort Collins, CO, 1982.Google Scholar
  5. Brandt, A., McCormick, S. F., Ruge, J. W. 1985Algebraic multigrid (AMG) for sparse matrix equationsEvans, D. J. eds. Sparsity and its applicationsCambridge University PressCambridge257284Google Scholar
  6. Brezina, M., Cleary, A. J., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel, T. A., McCormick, S. F., Ruge, J. W. 2000Algebraic multigrid based on element interpolation (AMGe)SIAM J. Sci. Comput.2215701592CrossRefMathSciNetGoogle Scholar
  7. Briggs, W. L., Henson, V. E., McCormick, S. F.: A multigrid tutorial, 2nd edition. Philadelphia: SIAM Books 2001.Google Scholar
  8. Chan, T. F., Vanek, P.: Detection of strong coupling in algebraic multigrid solvers. In: Multigrid methods VI, vol. 14. Berlin: Springer 2000, pp. 11–23.Google Scholar
  9. Chartier, T., Falgout, R. D., Henson, V. E., Jones, J., Manteuffel, T., McCormick, S., Ruge, J., Vassilevski, P. S. 2004Spectral AMGe (ρAMGe)SIAM J. Sci. Comput.25126MathSciNetGoogle Scholar
  10. Cleary, A. J., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel, T. A., McCormick, S. F., Miranda, G. N., Ruge, J. W. 2000Robustness and scalability of algebraic multigridSIAM J. Sci. Stat. Comput.2118861908CrossRefMathSciNetGoogle Scholar
  11. Falgout, R. D., Vassilevski, P. S. 2004On generalizing the algebraic multigrid frameworkSIAM J. Numer. Anal.4216691693CrossRefMathSciNetGoogle Scholar
  12. Haase, G., Langer, U., Reitzinger, S., Schöberl, J. 2004Algebraic multigrid methods based on element preconditioningInt. J. Comp. Math.78575598Google Scholar
  13. Henson, V. E., Vassilevski, P. 2001Element-free AMGe: general algorithms for computing the interpolation weights in AMGSIAM J. Sci. Comput.23629650CrossRefMathSciNetGoogle Scholar
  14. Jones, J. E., Vassilevski, P. 2001AMGe based on element agglomerationSIAM J. Sci. Comput.23109133CrossRefMathSciNetGoogle Scholar
  15. Kraus, J. K.: On the utilization of edge matrices in algebraic multigrid. Lecture Notes in Computer Science. Proc. 5th Int. Conf. on ``Large-Scale Scientific Computations'', Sozopol, Bulgaria, June 6–10, 2005 (to appear).Google Scholar
  16. Langer, U., Reitzinger, S., Schicho, J.: Symbolic methods for the element preconditioning technique. In: Proc. SNSC Hagenberg (Langer, U., Winkler, F., eds.). Springer 2002.Google Scholar
  17. Mandel, J., Brezina, M., Vaněk, P. 1999Energy optimization of algebraic multigrid basesComputing62205228CrossRefMathSciNetGoogle Scholar
  18. Ruge, J. W., Stüben, K. 1985Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG). Multigrid methods for integral and differential equationsPaddon, D. J.Holstein, H. eds. The Institute of Mathematics and Its Applications Conference SeriesClarendon PressOxford169212Google Scholar
  19. Ruge, J. W., Stüben, K.: Algebraic multigrid (AMG). In: Multigrid methods. Frontiers in Applied Mathematics, Vol. 3 (McCormick, S.F., ed.). Philadelphia: SIAM 1987, pp. 73–130.Google Scholar
  20. Schöberl, J.: NETGEN – An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 41–52 (1997).Google Scholar
  21. Stüben, K. 1983Algebraic multigrid (AMG): experiences and comparisonsAppl. Math. Comput.13419452CrossRefzbMATHMathSciNetGoogle Scholar
  22. Tuminaro, R. S., Tong, C.: Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines. Report, Sandia National Laboratories, 2000.Google Scholar
  23. Varga, R. S.: Matrix iterative analysis. Prentice-Hall 1962.Google Scholar
  24. Vaněk, P., Brezina, M., Mandel, J. 2001Convergence of algebraic multigrid based on smoothed aggregationNumer. Math.88559579MathSciNetGoogle Scholar
  25. Vaněk, P., Mandel, J., Brezina, M. 1996Algebraic multigrid based on smoothed aggregation for second- and fourth-order problemsComputing56179196MathSciNetGoogle Scholar
  26. Wan, W. L., Chan, T. F., Smith, B. 2000An energy-minimizing interpolation for robust multigrid methodsSiam J. Sci. Comput.2116321649MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsLinzAustria

Personalised recommendations