Advertisement

Computing

, Volume 75, Issue 2–3, pp 157–180 | Cite as

A Time Domain Point Source Method for Inverse Scattering by Rough Surfaces

  • C. D. LinesEmail author
  • S. N. Chandler-Wilde
Article

Abstract

In this paper we propose a new method to determine the location and shape of an unbounded rough surface from measurements of scattered electromagnetic waves. The proposed method is based on the point source method of Potthast (IMA J. Appl. Math. 61, 119–140, 1998) for inverse scattering by bounded obstacles. We propose a version for inverse rough surface scattering which can reconstruct the total field when the incident field is not necessarily time harmonic. We present numerical results for the case of a perfectly conducting surface in TE polarization, in which case a homogeneous Dirichlet condition applies on the boundary. The results show great accuracy of reconstruction of the total field and of the prediction of the surface location.

AMS Subject Classifications

78A46 65N21 35J05 35J25 

Keywords

Wave equation inverse scattering unbounded surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arens, T.: Why linear sampling works! Inverse Problems 20, 163–173 (2004). Google Scholar
  2. Arens, T., Kirsch A.: The factorization method in inverse scattering from periodic structures. Inverse Problems 19, 1195–1211 (2003). Google Scholar
  3. Chandler-Wilde S. N.: The impedance boundary value problem for the Helmholtz equation in a half-plane. Math. Meth. Appl. Sci. 20, 813–840 (1997). Google Scholar
  4. Chandler-Wilde S. N., Hothersall D. C.: Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane. J. Sound Vib. 180, 705–724 (1995). Google Scholar
  5. Chandler-Wilde, S. N., Ross C. R.: Scattering by rough surfaces: the Dirichlet problem for the Helmholtz equation in a non-locally perturbed half-plane. Math. Meth. Appl. Sci. 19, 959–976 (1996). Google Scholar
  6. Chandler-Wilde S. N., Ross C. R., Zhang B.: Scattering by rough surfaces. In: Proc. 4th Int. Conf. Math. Numer. Aspects wave prop. (DeSanto, J., ed.), pp. 164–168. SIAM 1998. Google Scholar
  7. Chandler-Wilde, S. N., Ross, C. R., Zhang, B.: Scattering by infinite one-dimensional rough surfaces. Proc. R. Soc. Lon. A 455, 3767–3787 (1999).Google Scholar
  8. Cheney, M.: A mathematical tutorial on synthetic aperture radar. SIAM Rev. 43, 301–312 (2001).Google Scholar
  9. Coifman, R., Goldberg, M., Hrycak, T., Israeli M., Rokhlin, V.: An improved operator expansion algorithm for direct and inverse scattering computations. Waves in Random Media 9, 441–457 (1999). Google Scholar
  10. Colton D., Coyle J, Monk, P.: Recent developments in inverse acoustic scattering theory. SIAM Rev. 42, 369–414 (2000).Google Scholar
  11. Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12, 383–393 (1996). Google Scholar
  12. DeSanto, J. A., Wombell, R. J.: The reconstruction of shallow rough-surface profiles from scattered field data. Inverse Problems 7, L7–L12 (1991).Google Scholar
  13. Elschner, J., Yamamoto, M.: An inverse problem in periodic diffractive optics: Reconstruction of Lipschitz grating profiles. Appl. Anal. 81, 1307–1328 (2002). Google Scholar
  14. Goodman, D., Conyers, L.: Ground penetrating radar. An introduction for archaeologists. AltaMira 1997. Google Scholar
  15. Ikehata M.: On reconstruction in the inverse conductivity problem with one measurement. Inverse Problems 16, 785–793 (2000). Google Scholar
  16. Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 14, 1489–1512 (1998). Google Scholar
  17. Kress, R.: Linear integral equations. Berlin: Springer 1989.Google Scholar
  18. Lines C. D.: Inverse scattering by unbounded rough surfaces. PhD thesis, Brunel University 2003. Google Scholar
  19. Lines, C. D., Chandler-Wilde, S. N.: A point source method for inverse scattering by rough surfaces. (in preparation). Google Scholar
  20. Meier A.: Numerical treatment of integral equations on the real line with application to Acoustic scattering by unbounded rough surfaces. PhD thesis, Brunel University 2001.Google Scholar
  21. Meier, A., Arens, T., Chandler-Wilde, S. N., Kirsch, A.: A Nyström method for a class of integral equations on the real line with applications to scattering by diffraction gratings and rough surfaces. J. Int. Eq. Appl. 12, 281–321 (2000).Google Scholar
  22. Newland, D. E.: An introduction to random vibrations, spectral and wavelet analysis. Longman 1993. Google Scholar
  23. Potthast, R.: A point source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA J. Appl. Math. 61, 119–140 (1998).Google Scholar
  24. Potthast R.: Point sources and multipoles in inverse scattering theory. CRC Press 2001.Google Scholar
  25. Potthast, R., Luke, D.: The no response test – a sampling method for inverse scattering problems. SIAM J. Appl. Math. 63, 1292–1312 (2003).Google Scholar
  26. Potthast, R., Sylvester, J., Kusiak, S.: A ‘‘range test’’ for determining scatterers with unknown physical properties. Inverse Problems 19, 533–547 (2003).Google Scholar
  27. Sheppard C.: Imaging of random surfaces and inverse scattering in the Kirchhoff approximation. Waves in Random Media 8, 53–66 (1998). Google Scholar
  28. Spivack M.: Direct solution of the inverse problem for rough scattering at grazing incidence. J. Phys. A: Math. Gen. 25, 3295–3302 (1992).Google Scholar
  29. Wombell, R. J., DeSanto, J. A.: Reconstruction of rough-surface profiles with the Kirchhoff approximation. J. Opt. Soc. Am. 8, 1892–1897 (1991).Google Scholar
  30. Ying, C., Noguchi, A.: Rough surface inverse scattering problem with Gaussian beam illumination. IEICE Trans. Electron. E77–C(11), 1781–1785 (1994).Google Scholar

Copyright information

© Springer-Verlag Wien 2005

Authors and Affiliations

  1. 1.Department of Mathematical SciencesBrunel UniversityMiddlesexUK
  2. 2.Department of MathematicsUniversity of Reading WhiteknightsBerkshireUK

Personalised recommendations