Advertisement

Molecular phylogeny and divergence times of the genus Hedysarum (Fabaceae) with special reference to section Multicaulia in Southwest Asia

  • Haniyeh Nafisi
  • Shahrokh Kazempour-OsalooEmail author
  • Valiollah Mozaffarian
  • Gerald M. Schneeweiss
Original Article
  • 6 Downloads

Abstract

A total of 93 species of Hedysarum from diverse biogeographic regions, in particular from southwest Asia, were included in phylogenetic analyses using nuclear (ITS) and plastid DNA sequences (trnL–trnF and matK). Maximum likelihood and Bayesian analyses of combined plastid data retrieved Hedysarum as monophyletic, whereas phylogenetic analyses of the nuclear data inferred Hedysarum as non-monophyletic. In both datasets, Hedysarum comprised three distinct and well-supported clades corresponding to sections Hedysarum, Stracheya and Multicaulia. The latter section fell into two distinct lineages, taxonomically redefined as H. subsects. Multicaulia and Crinifera. Thus, our results did not support the monophyly of the three traditionally recognized subsections of Multicaulia. Furthermore, within H. subsect. Crinifera, several species groups were recognized. Bayesian divergence time estimation suggested that the initial radiation of Hedysarum and the subsequent divergence of its major clades started in the middle Miocene and extended into the Pliocene and Pleistocene. Based on the molecular phylogenetic results, an updated taxonomic treatment is provided for H. subsects. Multicaulia and Crinifera as well as for H. sect. Stracheya expanded to include H. tibeticum plus four species traditionally placed in H. subsect. Subacaulia. For species of H. sect. Stracheya, a determination key is given.

Keywords

Crinifera Divergence times Hedysarum Multicaulia Phylogeny Stracheya Taxonomy 

Notes

Acknowledgements

We are grateful to Seher Karaman for preparing leaf samples of Turkey and Akram Kaveh for assisting in the laboratory and advising on methodology. Special thanks are given to Dr. E. Vitek, curator of Herbarium of Natural History Museum of Vienna, for his significant support in obtaining samples and helpful comments during the morphological studies and to Dr. D. Marshal from the University of Connecticut, for his noble comments in implementing phylogenetic analyses.

Supplementary material

606_2019_1620_MOESM1_ESM.pdf (525 kb)
Supplementary material 1 (PDF 525 kb)
606_2019_1620_MOESM2_ESM.pdf (284 kb)
Supplementary material 2 (PDF 283 kb)
606_2019_1620_MOESM3_ESM.pdf (448 kb)
Supplementary material 3 (PDF 447 kb)

References

  1. Acosta MC, Premoli AC (2010) Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Molec Phylogen Evol 54:235–242.  https://doi.org/10.1016/j.ympev.2009.08.008 CrossRefGoogle Scholar
  2. Ahangarian S, Kazempour-Osaloo S, Maassoumi AA (2007) Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences. Iran J Bot 13:64–74Google Scholar
  3. Akrami S, Mozaffarian V, Maassoumi AA, Nejadsattari T (2011) A new species of Hedysarum (Fabaceae) and a new record of Anemone (Ranunculaceae) from Iran. Iran J Bot 17:20–23.  https://doi.org/10.22092/ijb.2011.101547 CrossRefGoogle Scholar
  4. Amirabadi-zadeh H (2011) New records of Hedysareae (Papilionaceae) from Iran. Iran J Bot 17:63–68.  https://doi.org/10.22092/ijb.2011.101591 CrossRefGoogle Scholar
  5. Amirahmadi A, Kazempour-Osaloo S, Maassoumi AA (2010) Loss of chloroplast trnLUAA intron in two species of Hedysarum (Fabaceae): evolutionary implications. Iran J Biotechnol 8:150–155Google Scholar
  6. Amirahmadi A, Kazempour-Osaloo S, Larti M (2013) A new interesting record of Hedysarum L. (Hedysareae, Fabaceae) from Northwest of Iran. Iran J Bot 19:29–31.  https://doi.org/10.22092/ijb.2013.2989 CrossRefGoogle Scholar
  7. Amirahmadi A, Kazempour-Osaloo S, Moein F, Kaveh A, Maassoumi AA (2014) Molecular systematics of the tribe Hedysareae (Fabaceae) based on nrDNA ITS and plastid trnL-F and matK sequences. Pl Syst Evol 300:729–747.  https://doi.org/10.1007/s00606-013-0916-5 CrossRefGoogle Scholar
  8. Bagheri A, Maassoumi AA, Rahiminejad MR, Brassac J, Blattner FR (2017) Molecular phylogeny and divergence times of Astragalus section Hymenostegis: an analysis of a rapidly diversifying species group in Fabaceae. Sci Rep 7:14033.  https://doi.org/10.1038/s41598-017-14614-3 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bidarlord M, Ghahremaninejad F, Mozaffarian V (2015) Hedysarum persicum (Hedysareae, Leguminosae), a new species from Talesh Mountains. Iran. Phytotaxa 234:294–298.  https://doi.org/10.11646/phytotaxa.234.3.11 CrossRefGoogle Scholar
  10. Borchsenius F (2009) FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. Available at: http://www.aubot.dk/FastGap_home.htm
  11. Choi BH, Ohashi H (1996) Pollen morphology and taxonomy of Hedysarum and its related genera of the tribe Hedysareae (Leguminosae-Papilionoideae). J Jap Bot 71:191–213Google Scholar
  12. Choi BH, Ohashi H (2003) Generic criteria and an infrageneric system for Hedysarum and related genera (Papilionoideae-Leguminosae). Taxon 52:567–576.  https://doi.org/10.2307/3647455 CrossRefGoogle Scholar
  13. Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Molec Biol Evol 14:733–740.  https://doi.org/10.1093/oxfordjournals.molbev.a025813 CrossRefPubMedGoogle Scholar
  14. Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340.  https://doi.org/10.1016/j.tree.2009.01.009 CrossRefPubMedGoogle Scholar
  15. Dehshiri MM (2013) Hedysarum kalatense sp. nov. (Fabaceae) from Iran. Nordic J Bot 31:208–212.  https://doi.org/10.1111/j.1756-1051.2012.01535.x CrossRefGoogle Scholar
  16. Dehshiri MM, Goodarzi MM (2016) Taxonomic notes on Hedysarum sect. Crinifera (Fabaceae) In Iran, with description of a new species. Ann Bot Fenn 53:21–26.  https://doi.org/10.5735/085.053.0204 CrossRefGoogle Scholar
  17. Dehshiri MM, Maassoumi AA, Zarrini M (2012) Hedysarum garinense sp. nov. (Fabaceae: Hedysareae) from Iran. Nordic J Bot 30:522–525.  https://doi.org/10.1111/j.1756-1051.2011.01345.x CrossRefGoogle Scholar
  18. Djamali M, Baumel A, Brewer S, Jackson ST, Kadereit JW, López-Vinyallonga S, Mehregan I, Shabanian E, Simakova A (2012) Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two glacial–interglacial cycles in the continental Middle East for the Irano-Turanian flora. Rev Palaeobot Palynol 172:10–20.  https://doi.org/10.1016/j.revpalbo.2012.01.005 CrossRefGoogle Scholar
  19. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  20. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973.  https://doi.org/10.1093/molbev/mss075 CrossRefPubMedGoogle Scholar
  21. Duan LJ, Wen JN, Yang X, Liu PL, Arslan E, Ertuğrul K, Chang ZY (2015) Phylogeny of Hedysarum and tribe Hedysareae (Leguminosae: Papilionoideae) inferred from sequence data of ITS, matK, trnL-F and psbA-trnH. Taxon 64:49–64.  https://doi.org/10.12705/641.26 CrossRefGoogle Scholar
  22. Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedGoogle Scholar
  23. Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319.  https://doi.org/10.1111/j.1096-0031.1994.tb00181.x CrossRefGoogle Scholar
  24. Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN (2015) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev 90:236–253.  https://doi.org/10.1111/brv.12107 CrossRefPubMedGoogle Scholar
  25. Fedtschenko BA (1902) Generis Hedysari revisio. Acta Horti Petropolitani 19:183–342Google Scholar
  26. Fedtschenko BA (1972) Hedysarum L. (Leguminosae). In: Komarov VL, Shishkin BK, Bobrov EG (eds) Flora of the U.S.S.R 13. Israel Program for Scientific Translations. Keter Press, Jerusalem, pp 199–243Google Scholar
  27. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Molec Ecol 2:113–118.  https://doi.org/10.1111/j.1365-294X.1993.tb00005.x CrossRefGoogle Scholar
  28. Görür N, Sakinc M (1995) Miocene to Pliocene palaeogeographic evolution of Turkey and its surroundings. J Human Evol 28:309–324.  https://doi.org/10.1006/jhev.1995.1025 CrossRefGoogle Scholar
  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molec Biol Evol 7:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  30. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594.  https://doi.org/10.1080/10635150590947131 CrossRefPubMedGoogle Scholar
  31. Liu P-L, Wen J, Duan L, Arsalan E, Ertuğrul K, Chang Z-Y (2017) Hedysarum L. (Fabaceae: Hedysareae) is not monophyletic - evidence from phylogenetic analyses based on five nuclear and five plastid sequences. PLoS ONE 12:e0170596.  https://doi.org/10.1371/journal.pone.0170596 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lock JM (2005) Tribe Hedysareae. In: Lewis G, Schrire B, Mackinder B, Lock JM (eds) Legumes of the World. Royal Botanical Gardens, Kew, pp 489–495Google Scholar
  33. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana. IEEE, Piscataway, pp 45–52.  https://doi.org/10.1109/GCE.2010.5676129
  34. Moghaddam M, Kazempour-Osaloo S, Hosseiny H, Azimi F (2017) Phylogeny and divergence times of the Coluteoid clade with special reference to Colutea (Fabaceae) inferred from nrDNA ITS and two cpDNAs, matK and rpl32-trnL(UAG) sequences data. Pl Biosyst 151:1082–1093.  https://doi.org/10.1080/11263504.2016.1244120 CrossRefGoogle Scholar
  35. Naderi-Safar K, Kazempour-Osaloo S, Maassoumi AA, Zarre S (2014) Molecular phylogeny of Astragalus section Anthylloidei (Fabaceae) inferred from nrDNA ITS and plastid rpl32-trnL(UAG) sequence data. Turk J Bot 38:637–652.  https://doi.org/10.3906/bot-1308-44 CrossRefGoogle Scholar
  36. Nafisi H, Kazempour-Osaloo S, Mozaffarian V, Amini-Rad M (2019) Hedysarum alamutense (Fabaceae-Hedysareae), a new species from Iran, and its phylogenetic position based on molecular data. Turk J Bot 43:386–394.  https://doi.org/10.3906/bot-1806-50 CrossRefGoogle Scholar
  37. Noroozi J, Akhani H, Breckle SW (2007) Biodiversity and phytogeography of the alpine flora of Iran. Biodivers Conserv 17:493–521.  https://doi.org/10.1007/s10531-007-9246-7 CrossRefGoogle Scholar
  38. Noroozi J, Talebi A, Doostmohammadi M, Rumpf SB, Linder HP, Schneeweiss GM (2018) Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges. Sci Rep 8:10345.  https://doi.org/10.1038/s41598-018-28504-9 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  40. Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583.  https://doi.org/10.1093/bioinformatics/btm388 CrossRefPubMedGoogle Scholar
  41. Polhill RM (1981) Papilionoideae. In: Polhill RM, Raven PH (eds) Advances in Legume Systematics, part 1. Royal Botanic Gardens, Kew, pp 191–208Google Scholar
  42. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808.  https://doi.org/10.1080/10635150490522304 CrossRefPubMedGoogle Scholar
  43. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904.  https://doi.org/10.1093/sysbio/syy032 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ranjbar M (2010) Two new species of Hedysarum (Fabaceae) from Iran. Novon 20:329–333.  https://doi.org/10.3417/2008112 CrossRefGoogle Scholar
  45. Ranjbar M, Karamian R, Johartchi MR (2006) Notes on the taxonomy of Hedysarum (Fabaceae) in Iran. Ann Bot Fenn 43:152–155Google Scholar
  46. Ranjbar M, Karamian R, Olanj N (2007) A new species of Hedysarum (Fabaceae) in Iran and other new Hedysarum records. Bot J Linn Soc 155:505–512.  https://doi.org/10.1111/j.1095.8339.2007.00716.x CrossRefGoogle Scholar
  47. Ranjbar M, Karamian R, Olanj N, Johartchi MR (2008) A key and four new species of Hedysarum (Fabaceae) in Iran. Nordic J Bot 26:10–20.  https://doi.org/10.11646/phytotaxa.39.1.5 CrossRefGoogle Scholar
  48. Rechinger KH (1952) Papilionaceae novae iranicae (Rechingeri iter irnaicum secundum –Nr. 15). Bot Jahrb Syst Pflanzengesch Pflanzengeogr 75:333–341Google Scholar
  49. Rechinger KH (1984) Tribus Hedysareae. In: Rechinger KH (ed) Papilionaceae II, Flora Iranica 157:365–475. Akademische Druck- und Verlagsanstalt, GrazGoogle Scholar
  50. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implication for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817.  https://doi.org/10.1073/pnas.92.15.6813 CrossRefPubMedGoogle Scholar
  52. Shahi-Shavvon R, Kazempour-Osaloo SH, Moharrek F, Karaman Erkul S, Lemmon AR, Moriarty Lemmon E, Michalak I, Muellner-Riehl AN, Favre A (2017) Increasing phylogenetic support for explosively radiating taxa: the promise of high-throughput sequencing for Oxytropis (Fabaceae). J Syst Evol 55:385–404.  https://doi.org/10.1111/jse.12269 CrossRefGoogle Scholar
  53. Shi W, Liu PL, Duan L, Pan BR, Su ZH (2017) Evolutionary response to the Qinghai- Tibetan Plateau uplift: phylogeny and biogeography of Ammopiptanthus and tribe Thermopsideae (Fabaceae). PeerJ 5:e3607.  https://doi.org/10.7717/peerj.3607 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Soltis DE, Kuzoff RK (1995) Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49:727–742.  https://doi.org/10.1111/j.1558-5646.1995.tb02309.x CrossRefPubMedGoogle Scholar
  55. Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Steele KP, Wojciechowski MF (2003) Phylogenetic analyses of tribes Trifolieae and Vicieae, based on sequences of the plastid gene matK (Papilionoideae: Leguminosae). In: Klitgaard BB, Bruneau A (eds) Advances in legume systematics, part 10, higher level systematics. Royal Botanic Garden, Kew, pp 355–370Google Scholar
  57. Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous-time Markov chain evolutionary models. Molec Biol Evol 18:1001–1013CrossRefPubMedGoogle Scholar
  58. Suchard MA, Weiss RE, Dorman KS, Sinsheimer JS (2003) Inferring spatial phylogenetic variation along nucleotide sequences: a multiple change-point model. J Amer Stat Assoc 98:427–437CrossRefGoogle Scholar
  59. Suchard MA, Weiss RE, Sinsheimer JS (2005) Models for estimating Bayes factors with applications to phylogeny and tests of monophyly. Biometrics 61:665–673CrossRefPubMedGoogle Scholar
  60. Swofford DL (2002) Phylogenetic analysis using parsimony (* and other methods). Version. 4. Sinauer Associates, SunderlandGoogle Scholar
  61. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109.  https://doi.org/10.1007/BF00037152 CrossRefGoogle Scholar
  62. Tavakkoli S, Kazempour Osaloo S, Mozaffarian V, Maassoumi AA (2015) Molecular phylogeny of Atraphaxis and the woody Polygonum species (Polygonaceae): taxonomic implications based on molecular and morphological evidence. Pl Syst Evol 301:1157–1170.  https://doi.org/10.1007/s00606-014-1140-7 CrossRefGoogle Scholar
  63. Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular Systematics of Plants II: DNA Sequencing. Springer, Boston, pp 265–296CrossRefGoogle Scholar
  64. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: White T, Innis M, Gelfand D, Sninsky J (eds) PCR Protocols: A guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  65. Wicke S, Schneeweiss GM, de Pamphilis CW, Müller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Pl Molec Biol 76:273–297.  https://doi.org/10.1007/s11103-011-9762-4 CrossRefGoogle Scholar
  66. Wojciechowski MF (2003) Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective. In: Klitgaard B, Bruneau A (eds) Advances in Legume Systematics, part 10. Royal Botanic Gardens, Kew, pp 5–35Google Scholar
  67. Wojciechowski MF (2005) Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57:382–396.  https://doi.org/10.1663/0007-196X(2005)057 CrossRefGoogle Scholar
  68. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A (2000) Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a super tree approach. In: Herendeen P, Bruneau A (eds) Advances in legume systematics, part 9. Royal Botanic Garden, Kew, pp 277–298Google Scholar
  69. Wojciechowski MF, Lavin M,  Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid gene resolves many well-supported subclades within the family. Amer J Bot 91:1846–1862Google Scholar
  70. Xu LR, Choi BH (2010) Hedysarum (Fabaceae–Hedysareae). In: Wu ZY, Raven PH, Hong DY (eds) Flora of China 10. Science Press, Beijing, pp 514–525Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Biology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  2. 2.Research Institute of Forests and RangelandsAgricultural Research, Education and Extension Organization (AREEO)TehranIran
  3. 3.Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria

Personalised recommendations