Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 10, pp 985–999 | Cite as

Genetic variation among and within Lithops species in Namibia

  • Sonja LootsEmail author
  • Hilde Nybom
  • Michaela Schwager
  • Jasna Sehic
  • Christiane M. Ritz
Original Article
  • 43 Downloads

Abstract

The dwarf succulent genus Lithops is endemic to Southern Africa and of considerable conservation concern. Species delimitation is often problematic and based mainly on leaf morphology, which is strongly associated with habitat. Relationships between taxa and populations in Namibia were studied with amplified fragment length polymorphisms using 44 wild Lithops populations representing 15 species and 23 taxa. Four primer pairs produced 92 polymorphic bands in the 223 samples. Expected heterozygosity (He) within taxa ranged from 0.086 to 0.450. Genetic and geographic distances were correlated according to a Mantel test. Analysis of molecular variance showed only 23% variation among the 15 investigated species. Genetic differentiation and structuring were investigated with a principal coordinate analysis, a neighbour-joining and a Bayesian phylogeny, a Bayesian clustering analysis and a discriminant analysis of principal components. In all five analyses, L. optica and L. herrei, which differ only in flower colour, clustered closely together and are here combined under L. optica. The morphologically similar species L. amicorum and L. karasmontana clustered together. Lithops amicorum is therefore reduced to subspecific level: L. karasmontana subsp. amicorum, comb. nov. Subspecific taxa overlapped to a large extent except in L. karasmontana where 13% of the variability resided among subspecies, whereas the nominal subspecies differed from subsp. bella and subsp. eberlanzii; the latter two could not be separated and are here combined under L. karasmontana subsp. bella.

Keywords

Aizoaceae Molecular marker Phylogenetics Succulent Taxonomy 

Notes

Acknowledgements

Financial support was received from the SADC Plant Genetic Resources Centre (SPGRC) in Lusaka, Zambia and the Swedish International Development and Cooperation Agency (Sida). Technical support was received from the Senckenberg Biodiversitäts- und Klimaforschungszentrum, Germany (SBik-F) and assistance with statistical analyses from V. Herklotz and advices in taxonomic treatments from V. Otte (Senckenberg Museum of Natural History Görlitz, Germany). Technical, administrative and financial support was received from the Ministry of Agriculture, Water and Forestry of Namibia and especially staff at the National Botanical Research Institute (Windhoek, Namibia). The Ministry of Environment and Tourism of Namibia granted research and entry permits into National Parks. Rössing Uranium Mine, Husab Uranium mine, Langer Heinrich Mine, Namdeb Diamond mine and Scorpion Zinc mine granted access and assistance in their license areas. The late Tok Schoeman, Hilde and Frikkie Mouton (Namibia), Roy Earle (UK) and Keith Green (UK) provided information about localities. Lize von Staden of the South African National Biodiversity Institute (SANBI) and the Threatened Species Programme, Pieter van Wyk from South African National Parks (SANParks) and the Custodians of Rare and Endangered Wildlife (CREW), South Africa, are acknowledged for data to re-assess Lithops optica/L. herrei. This work would not have been possible without the Namibian farm owners who granted access to their farms and provided assistance: Mr and Ms G.S. Berg, Ms B. Boehm-Erni, C. Buhrman, W. Diergaardt, L. Gessert, J. and S. Hopkins, B. and L. Eksteen, H. Esterhuizen, W. Itzko, Ms. Koch, A. Louw, J. and J. van Niekerk, Mr. I and Ms. du Plooy (Farm Garub), N. and C. Pretorius, H and O. Pretorius, A. Rusch, F. Snyman, B.N. and J. Steyn, P. and W. Swiegers, W. Teubner, G.G. Viviers, D. De Wet, R. and R. von Wielich.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2019_1619_MOESM1_ESM.pdf (123 kb)
Supplementary material 1 (PDF 122 kb)
606_2019_1619_MOESM2_ESM.pdf (367 kb)
Supplementary material 2 (PDF 366 kb)
606_2019_1619_MOESM3_ESM.pdf (235 kb)
Supplementary material 3 (PDF 234 kb)
606_2019_1619_MOESM4_ESM.pdf (289 kb)
Supplementary material 4 (PDF 289 kb)

References

  1. Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ (2011) Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc Nat Acad Sci USA 108:8379–8384.  https://doi.org/10.1073/pnas.1100628108 CrossRefPubMedGoogle Scholar
  2. Brown NE, Tischer A, Karsten MC (1931) Mesembryanthema descriptions, with chapters on cultivation and general ecology. L. Reeve and Co., Ltd., KentGoogle Scholar
  3. Buys MH, Janse van Rensburg L-L, Mienie CMS, Barker N, Burgoyne PM, Mills L, Van Rensburg L, Hartmann H (2008) Applying AFLPs in Aizoaceae: The Delosperma herbeum complex as a case study. Biochem Syst Ecol 36:92–100.  https://doi.org/10.1016/j.bse.2007.08.003 CrossRefGoogle Scholar
  4. Chesselet P, Burgoyne PM, Klak C, Kurzweil H, Dold AP, Griffin NJ, Smith GF (2003) Mesembryanthemaceae. In: Germishuizen G, Meyer NL (eds) Plants of southern Africa: an annotated checklist. Strelitzia 14. National Botanical Institute, Pretoria, pp 633–738Google Scholar
  5. Clark JY (1996) A key to Lithops N.E. Brown (Aizoaceae). Bradleya 14:1–9.  https://doi.org/10.25223/brad.n14.1996.a1 CrossRefGoogle Scholar
  6. Cole DT (1988a) Lithops flowering stones. Acorn Books & Russel Friedman, JohannesburgGoogle Scholar
  7. Cole DT (1988b) Lithops locality data. Numerical index C001–C392, and alphabetical species index), 3rd edn. Published by author, JohannesburgGoogle Scholar
  8. Cole DT (2006) Lithops – two new taxa. Cactus & Co 10:57–59Google Scholar
  9. Cole DT (2012) Lithops karasmontana subsp. karasmontana var. immaculata. Cactus & Co 16:8–13Google Scholar
  10. Cole DT, Cole NA (2001) In: Hartmann HEK (ed) Illustrated handbook of succulent plants: Aizoaceae, F-Z. Springer, BerlinGoogle Scholar
  11. Cole DT, Cole NA (2005) Lithops flowering stones. Cactus & Co, TradateGoogle Scholar
  12. De Boer HW, Boom BK (1961) Notities over Lithops. Succulenta 4:41–42Google Scholar
  13. Dray S, Dufour A-B, Thioulouse J (2007) The ade4 package II: two-table and K-table methods. R News 7:47–52Google Scholar
  14. Eller BM, Ruess B (1982) Water relations of Lithops plants embedded into the soil and exposed to free air. Physiol Pl 55:329–334.  https://doi.org/10.1111/j.1399-3054.1982.tb00300.x CrossRefGoogle Scholar
  15. Ellis AG, Weis AE, Gaut BS (2006) Evolutionary radiation of “stone plants” in the genus Argyroderma (Aizoaceae): unravelling the effects of landscape, habitat, and flowering time. Evolution 60:39–55.  https://doi.org/10.1111/j.0014-3820.2006.tb01080.x CrossRefPubMedGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294x.2005.02553x CrossRefGoogle Scholar
  17. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578.  https://doi.org/10.1111/j.1471-8286.2007.01758x CrossRefGoogle Scholar
  18. Hammer SA (1999) Lithops treasures of the veld. British Cactus and Succulent Society, NorwichGoogle Scholar
  19. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.  https://doi.org/10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  20. Irish J (1994) The biomes of Namibia, as determined by objective categorisation. Navorsinge Natl Mus Bloemfontein 10:550–591Google Scholar
  21. IUCN (2001) IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. IUCN, Gland and CambridgeGoogle Scholar
  22. Jainta H (2017) Wild Lithops. Klaus Hess publisher, GöttingenGoogle Scholar
  23. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94.  https://doi.org/10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kellner A, Ritz CM, Schlittenhardt P, Hellwig FH (2011) Genetic differentiation in the genus Lithops L. (Ruschioideae, Aizoaceae) reveals a high level of convergent evolution and reflects geographic distribution. Pl Biol 13:368–380.  https://doi.org/10.1111/j.1438-8677.2010.00354.x CrossRefGoogle Scholar
  25. Klaassen ES, Kwembeya EG (eds) (2013) A Checklist of Namibian indigenous and naturalised plants. Occasional Contributions No. 5. National Botanical Research Institute, WindhoekGoogle Scholar
  26. Klak C, Khunou A, Reeves G, Hedderson T (2003) A phylogenetic hypothesis for the Aizoaceae (Caryophyllales) based on four plastid DNA regions. Amer J Bot 90:1433–1445.  https://doi.org/10.3732/ajb.90.10.1433 CrossRefGoogle Scholar
  27. Klak C, Reeves G, Hedderson T (2004) Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427:63–65.  https://doi.org/10.1038/nature02243 CrossRefPubMedGoogle Scholar
  28. Klak C, Bruyns PV, Hanáček P (2013) A phylogenetic hypothesis for the recently diversified Ruschieae (Aizoaceae) in southern Africa. Molec Phylogen Evol 69:1005–1020.  https://doi.org/10.1016/j.ympev.2013.05.030 CrossRefGoogle Scholar
  29. Koopman WJM, Vosman B, Sabatino GJH, Visser D, Van Huylenbroeck J, De Riek J, De Cock K, Wissemann V, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships in the genus Rosa (Rosaceae). Amer J Bot 95:353–366.  https://doi.org/10.3732/ajb.95.3.353 CrossRefGoogle Scholar
  30. Loots S (2005) Red data book of Namibian plants. Southern African Botanical Diversity Report No. 38. SABONET, Pretoria and WindhoekGoogle Scholar
  31. Loots S (2011) National conservation assessment and management of two Namibian succulents, with specific reference to the Rössing Uranium Mine. Report on a partnership project between the National Botanical Research Institute of Namibia, Rössing Uranium Limited, the Rio Tinto Group and the Royal Botanic Gardens, Kew. (Unpublished)Google Scholar
  32. Loots S, Nybom H (2017) Towards better risk assessment for conservation of flowering stones: Plant density, spatial pattern and habitat preference of Lithops pseudotruncatella in Namibia. S African J Bot 109:112–115.  https://doi.org/10.1016/j.sajb.2016.12.023 CrossRefGoogle Scholar
  33. Loots S, Ritz CM, Schwager M, Sehic J, Garkava-Gustavsson L, Herklotz V, Nybom H (2019) Distribution, habitat profile and genetic variability of Namibian succulent Lithops ruschiorum. Bothalia 49:1–18.  https://doi.org/10.4102/abc.v49i1.2408 CrossRefGoogle Scholar
  34. Nel GC (1946) Lithops. University Press, StellenboschGoogle Scholar
  35. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molec Ecol 13:1143–1155CrossRefGoogle Scholar
  36. Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Pl Ecol Evol Syst 3:93–114.  https://doi.org/10.1111/j.1365.294x2004.02141 CrossRefGoogle Scholar
  37. Peakall R, Smouse P (2012) GENALEX 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  39. QGIS Development Team (2018) QGIS Geographic Information System vers. 2.18.25. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org. Accessed 21 Dec 2018
  40. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/ Google Scholar
  41. Ritz CM, Fickenscher K, Foeller J, Hermann K, Mecklenburg R, Wahl R (2016) Molecular phylogenetic relationships of the Andean genus Aylostera Speg. (Cactaceae, Trichocereeae), a new classification and a morphological identification key. Pl Syst Evol 302:763–780.  https://doi.org/10.1007/s00606-016-1296-4 CrossRefGoogle Scholar
  42. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molec Ecol Notes 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  43. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nature Biotech 18:233–234.  https://doi.org/10.1038/72708 CrossRefGoogle Scholar
  44. Schwantes G (1957) Flowering stones and mid-day flowers. Ernest Benn Limited, LondonGoogle Scholar
  45. Swofford DL (2002) Paup* 4.0. Phylogenetic analyses using parsimony (and other methods), 4th edn. Sinauer Associates, SunderlandGoogle Scholar
  46. Turner JS, Picker MD (1993) Thermal ecology of an embedded dwarf succulent from southern Africa (Lithops spp.: Mesembryanthemaceae). J Arid Environm 24:361–385.  https://doi.org/10.1006/jare.1993.1031 CrossRefGoogle Scholar
  47. Van Jaarsveld E (1987) The succulent riches of South Africa and Namibia. Aloe 24:45–92Google Scholar
  48. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414.  https://doi.org/10.1093/nar/23.21.4407 CrossRefGoogle Scholar
  49. Wallace RS (1990) Systematic significance of allozyme variation in the genus Lithops (Mesembryanthemaceae). Mitt Inst Allg Bot Hamburg 23:509–524Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant BreedingUniversity of Agricultural SciencesAlnarpSweden
  2. 2.National Botanical Research InstituteMinistry of Agriculture, Water and ForestryWindhoekNamibia
  3. 3.Department of Plant Breeding, BalsgårdSwedish University of Agricultural SciencesKristianstadSweden
  4. 4.Senckenberg Museum of Natural History GörlitzGörlitzGermany

Personalised recommendations