Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 9, pp 719–726 | Cite as

Intraspecific lineages as focal points in the extinction and persistence of species

  • Donald A. LevinEmail author
Invited Review

Abstract

A deteriorating environment causes species’ range contraction and places species on a trajectory toward rarity and ultimately extinction. Contraction hypotheses focus on the cumulative demise of single populations or groups thereof, without regard to their evolutionary/genetic affinity. I propose that genealogical lineages, be they referred to as subspecies, ecogeographical races, or otherwise, are focal points in the extinction trajectory of species. Such intraspecific entities are likely to be well integrated and respond individualistically to environmental change. Given that these entities have disparate geographical footprints, substantive and varied environmental degradation across a species’ range may cause the demise of intraspecific entities independently of each other. Eventually, all lineages may go extinct and with that the species as a whole. Biodiversity loss has tended to be measured in terms of changes in population and species numbers. The development and implementation of improved conservation policies is contingent upon recognizing the importance of discrete lineages in species survival.

Keywords

Environmental change Extinction Intraspecific lineages/taxa Persistence 

Notes

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest or plagiarism.

Human and animal rights

No humans or animals were involved in the study, which is based only on the literature.

References

  1. Abeli T, Gentili R, Rossi G, Bedini G, Foggi B (2009) Can the IUCN criteria be effectively applied to peripheral isolated plant populations? Biodivers Conservation 18:3877–3890.  https://doi.org/10.1007/s10531-009-9685-4 CrossRefGoogle Scholar
  2. Anadón JD, Graciá E, Botella F, Giménez A, Fahd S, Fritz U (2015) Individualistic response to past climate changes: niche differentiation promotes diverging Quaternary range dynamics in the subspecies of Testudo graeca. Ecography 38:956–966.  https://doi.org/10.1111/ecog.01163 CrossRefGoogle Scholar
  3. Araujo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47.  https://doi.org/10.1016/j.tree.2006.09.010 CrossRefPubMedGoogle Scholar
  4. Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235–242.  https://doi.org/10.1007/s10531-009-9685-4 CrossRefPubMedGoogle Scholar
  5. Baldwin BG, Kalisz S, Armbruster WS (2011) Phylogenetic perspectives on diversification, biogeography, and floral evolution of Collinsia and Tonella (Plantagineaceae). Amer J Bot 98:731–753CrossRefGoogle Scholar
  6. Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44.  https://doi.org/10.1016/j.tree.2007.09.008 CrossRefPubMedGoogle Scholar
  7. Bestion E, Clobert J, Cote J (2015) Dispersal response to climate change: scaling down to intraspecific variation. Ecol Lett 18:1226–1233.  https://doi.org/10.1111/ele.12502 CrossRefGoogle Scholar
  8. Bibby CJ (1994) Recent, past and future extinctions in birds. Phil Trans Roy Soc London B Biol Sci 344:35–40.  https://doi.org/10.1098/rstb.1994.0048 CrossRefGoogle Scholar
  9. Birand A, Vose A, Gavrilet S (2012) Patterns of species ranges, speciation and extinction. Amer Naturalist 179:1–21.  https://doi.org/10.1086/663202 CrossRefGoogle Scholar
  10. Botero CA, Dor R, McCain CM, Safran RJ (2014) Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Molec Ecol 23:259–268.  https://doi.org/10.1111/mec.12572 CrossRefGoogle Scholar
  11. Buckley TR (2016) Applications of phylogenetics to solve practical problems in insect conservation. Curr Opin Insect Sci 18:35–39.  https://doi.org/10.1016/j.cois.2016.09.005 CrossRefPubMedGoogle Scholar
  12. Burbidge AA, McKenzie NL (1989) Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biol Conservation 50:143–198.  https://doi.org/10.1016/0006-3207(89)90009-8 CrossRefGoogle Scholar
  13. Cardillo M et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241.  https://doi.org/10.1126/science.1116030 CrossRefPubMedGoogle Scholar
  14. Carter RN, Prince SD (1981) Epidemic models to explain biogeographic distribution limits. Nature 293:644645CrossRefGoogle Scholar
  15. Carvalho SB, Velo-Antón G, Tarroso P, Portela AP, Barata M, Carranza S, Moritz C, Possingham HP (2017) Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nature Ecol Evol 1:0151CrossRefGoogle Scholar
  16. Channell R, Lomolino MV (2000a) Trajectories to extinction: spatial dynamics of the contraction of species ranges. J Biogeogr 27:169–179.  https://doi.org/10.1046/j.1365-2699.2000.00382.x CrossRefGoogle Scholar
  17. Channell R, Lomolino MV (2000b) Dynamic biogeography and conservation of endangered species. Nature 403:84–86CrossRefGoogle Scholar
  18. Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357.  https://doi.org/10.1371/journal.pbio.1000357 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Clausen J (1951) Stages in the evolution of plant species. Cornell University Press, IthacaGoogle Scholar
  20. Clausen J, Hiesey WM (1958) Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Institution of Washington Publication 615, WashingtonGoogle Scholar
  21. Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE (2017) Invasions and extinctions through the looking glass of evolutionary ecology. Phil Trans Roy Soc London B Biol Sci 372:20160031.  https://doi.org/10.1098/rstb.2016.0031 CrossRefGoogle Scholar
  22. Collen B, McRae L, Deinet S, De Palma A, Carranza T, Cooper N, Loh J, Baillie JEM (2011a) Predicting how populations decline to extinction. Phil Tran Roy Soc London B Biol Sci 366:2577–2586.  https://doi.org/10.1098/rstb.2011.0015 CrossRefGoogle Scholar
  23. Collen B, Turvey ST, Waterman C, Meredith HMR, Kuhn TS, Baillie JEM, Isaac NJB (2011b) Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Phil Trans Roy Soc London B Biol Sci 366:2611–2622.  https://doi.org/10.1098/rstb.2011.0109 CrossRefGoogle Scholar
  24. Collen B et al (2016) Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biol Lett 12:20150843.  https://doi.org/10.1098/rsbl.2015.0843 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849–863.  https://doi.org/10.1111/j.1461-0248.2009.01336.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. Coyne JA, Orr HA (2004) Speciation. Sinauer, SunderlandGoogle Scholar
  27. Crandall KA, Bininda-emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary pressures in conservation biology. Trends Ecol Evol 15:290–295.  https://doi.org/10.1016/S0169-5347(00)01876-0 CrossRefPubMedGoogle Scholar
  28. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270CrossRefGoogle Scholar
  29. D’Amen M, Zimmermann NE, Pearman PB (2013) Conservation of phylogeographic lineages under climate change. Global Ecol Biogeogr 22:93–104.  https://doi.org/10.1111/j.1466-8238.2012.00774.x CrossRefGoogle Scholar
  30. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679.  https://doi.org/10.1126/science.292.5517.673 CrossRefGoogle Scholar
  31. Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86:1704–1714.  https://doi.org/10.1890/03-0788 CrossRefGoogle Scholar
  32. de Lafontaine G et al (2018) Invoking adaptation to decipher the genetic legacy of past climate change. Ecology 99:1530–1546.  https://doi.org/10.1002/ecy.2382 CrossRefPubMedGoogle Scholar
  33. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2015) Estimating the normal background rate of species extinction. Conservation Biol 29:452–462.  https://doi.org/10.1111/cobi.12380 CrossRefGoogle Scholar
  34. Di Vecchi-Staraz M, Laucou V, Bruno G, Lacombe T, Gerber S, Bourse T, Boselli M, This P (2009) Low level of pollen mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. silvestris. J Heredity 100:66–75.  https://doi.org/10.1093/jhered/esn084 CrossRefGoogle Scholar
  35. Dimitrov D, Nogues-Bravo D, Scharff N (2012) Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc Mountains and the drivers of Saintpaulia diversity. PLoS ONE 7:e48908CrossRefGoogle Scholar
  36. Dynesius M, Jansson R (2013) Persistence of within-species lineages: a neglected control of speciation rate. Evolution 68:923–934.  https://doi.org/10.1111/evo.12316 CrossRefPubMedGoogle Scholar
  37. Frankham R (2005) Genetics and extinction. Biol Conservation 126:131–140.  https://doi.org/10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  38. Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molec Ecol 24:2610–2618.  https://doi.org/10.1111/mec.13139 CrossRefGoogle Scholar
  39. Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 7:123–139.  https://doi.org/10.1111/eva.12112 CrossRefPubMedGoogle Scholar
  40. Fraser D, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molec Ecol 10:2741–2752.  https://doi.org/10.1046/j.0962-1083.2001.01411.x CrossRefGoogle Scholar
  41. Friar EA, Robichau RH, Mount DW (1996) Molecular genetic variation following a population crash in the endangered Mauna Kea silverswood, Argyroxiphium sandwicense spp. sandwicense (Asteraceae). Molec Ecol 5:687–691.  https://doi.org/10.1111/j.1365-294X.1996.tb00363.x CrossRefGoogle Scholar
  42. Futuyma DJ (1987) On the role of species in anagenesis. Amer Nat 130:465–473CrossRefGoogle Scholar
  43. Gaston KJ (1994) Rarity. Chapman and Hall, New YorkCrossRefGoogle Scholar
  44. Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9.  https://doi.org/10.1111/j.1365-2664.2008.01596.x CrossRefGoogle Scholar
  45. Godt MJW, Hamrick JL (1998) Allozyme diversity in the endangered pitcher plant Sarracenia rubra ssp. alabamensis (Sarraceniaceae) and its close relative S. rubra ssp. rubra. Amer J Bot 85:802–810CrossRefGoogle Scholar
  46. González-Suárez M, Revilla E (2013) Variability in life-history and ecological traits is a buffer against extinction in mammals. Ecol Lett 16:242–251.  https://doi.org/10.1111/ele.12035 CrossRefPubMedGoogle Scholar
  47. Grant V (1981) The origin of adaptations, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  48. Haig SM, Beever EA, Chambers SM, Draheim HM, Dugger BD et al (2006) Taxonomic considerations in listing subspecies under the US Endangered Species Act. Conservation Biol 20:1584–1594.  https://doi.org/10.1111/j.1523-1739.2006.00530.x CrossRefGoogle Scholar
  49. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  50. Harrison S, Quinn JF (1989) Correlated environments and the persistence of metapopulations. Oikos 56:293–298CrossRefGoogle Scholar
  51. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913CrossRefGoogle Scholar
  52. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Phil Trans Roy Soc London B Biol Sci 359:183–195.  https://doi.org/10.1098/rstb.2003.1388 CrossRefGoogle Scholar
  53. Hewitt GM (2011) Quaternary phylogeography: the roots to hybrid zones. Genetica 139:617–638.  https://doi.org/10.1007/s10709-011-9547-3 CrossRefPubMedGoogle Scholar
  54. Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci USA 98:2928–2933.  https://doi.org/10.1073/pnas.031358898 CrossRefPubMedGoogle Scholar
  55. Janssens SB, Eric B, Knox EB, Huysmans S, Erik F, Smets EF, Merckx VSFT (2009) Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Molec Phylogen Evol 52:806–824CrossRefGoogle Scholar
  56. Jones KE, Purvis A, Gittleman JL (2003) Biological correlates of extinction risk in bats. Amer Nat 161:601–614CrossRefGoogle Scholar
  57. Joshi J, Schmid B, Caldeira M, Dimitrakopoulos PJ, Good J et al (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544.  https://doi.org/10.1046/j.1461-0248.2001.00262.x CrossRefGoogle Scholar
  58. Kallimanis AS, Kunin WE, Halley JM, Sgardelis SP (2005) Metapopulation extinction risk under spatiallyautocorrelated disturbance. Conservation Biol 19:534–546.  https://doi.org/10.1111/j.1523-1739.2005.00418.x CrossRefGoogle Scholar
  59. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  60. Kisel Y, Barraclough TG (2010) Speciation has a spatial scale that depends on levels of gene flow. Amer Nat 175:316–334.  https://doi.org/10.1086/650369 CrossRefGoogle Scholar
  61. Kolbe SE, Lockwood R, Hunt G (2011) Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37:355–368.  https://doi.org/10.1666/09073.1 CrossRefGoogle Scholar
  62. Lamsdell JC, Congreve CR, Hopkins MJ, Krug AZ, Patzkowsky ME (2017) Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends Ecol Evol 32:452–463.  https://doi.org/10.1016/j.tree.2017.03.002 CrossRefPubMedGoogle Scholar
  63. Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413.  https://doi.org/10.1016/0169-5347(93)90043-O CrossRefPubMedGoogle Scholar
  64. Levin DA (2005) Isolate selection and ecological speciation. Syst Bot 30:233–241.  https://doi.org/10.1600/0363644054223576 CrossRefGoogle Scholar
  65. Levin DA (2012) The long wait for hybrid sterility in flowering plants. New Phytol 196:666–670.  https://doi.org/10.1111/j.1469-8137.2012.04309.x CrossRefPubMedGoogle Scholar
  66. Levin DA (2013) The timetable for allopolyploidy in flowering plants. Ann Bot (Oxford) 112:1201–1208.  https://doi.org/10.1093/aob/mct194 CrossRefGoogle Scholar
  67. Levin DA, Scarpino SV (2017) On the young age of intraspecific herbaceous taxa. New Phytol 213:1513–1520.  https://doi.org/10.1111/nph.14224 CrossRefPubMedGoogle Scholar
  68. Lopez L, Retuerto R, Roiloa S, Santiso X, Barreiro R (2015) A multi-faceted approach for assessing evolutionary significant conservation units in the endangered Omphalodes littoralis subsp. gallaecica (Boraginaceae). Perspect Pl Ecol Evol Syst 17:54–65.  https://doi.org/10.1016/j.ppees.2014.09.003 CrossRefGoogle Scholar
  69. Lowry DB (2012) Ecotypes and the controversy over stages in the formation of species. Biol J Linn Soc 106:241–257.  https://doi.org/10.1111/j.1095-8312.2012.01867.x CrossRefGoogle Scholar
  70. Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conservation Biol 5:148–157.  https://doi.org/10.1111/j.1523-1739.1991.tb00119.x CrossRefGoogle Scholar
  71. Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner KT, Bonin A, Fortin MJ (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molec Ecol 19:3760–3772CrossRefGoogle Scholar
  72. Maurer BA, Nott MP (1998) In: McKinney ML, Drake JA (eds) Biodiversity dynamics. Columbia University Press, New York, pp 31–50Google Scholar
  73. May-Collado LJ, Agnarsson I (2011) Phylogenetic analysis of conservation priorities for aquatic mammals and their terrestrial relatives, with a comparison of methods. PLoS ONE 6:e22562.  https://doi.org/10.1371/journal.pone.0022562 CrossRefPubMedPubMedCentralGoogle Scholar
  74. McGlaughlin ME, Riley L, Helenurm K (2009) Isolation of microsatellite loci from the endangered plant Galium catalinense subspecies acrispum (Rubiaceae). Molec Ecol Resources 9:984–986.  https://doi.org/10.1111/j.1755-0998.2009.02545.x CrossRefGoogle Scholar
  75. Médail F, Baumel A (2018) Using phylogeography to define conservation priorities: the case of narrow endemic plants in the Mediterranean Basin hotspot. Biol Conservation 224:258–266.  https://doi.org/10.1016/j.biocon.2018.05.028 CrossRefGoogle Scholar
  76. Morales-Barbero J, Martinez PA, Ferrer-Castán D, Olalla-Tárraga MÁ (2017) Quaternary refugia are associated with higher speciation rates in mammalian faunas of the Western Palaearctic. Ecography 40:1–14.  https://doi.org/10.1111/ecog.02647 CrossRefGoogle Scholar
  77. Morin X, Lechowicz MJ (2013) Niche breadth and range area in North American trees. Ecography 36:300–312.  https://doi.org/10.1111/j.1600-0587.2012.07340.x CrossRefGoogle Scholar
  78. Nicole F, Tellier F, Vivat A, Till-Bottraud I (2007) Conservation unit status inferred for plants by combining interspecific crosses and AFLP. Conservation Genet 8:1273–1285.  https://doi.org/10.1007/s10592-006-9277-8 CrossRefGoogle Scholar
  79. Nosil P (2012) Ecological speciation. Oxford University Press, OxfordCrossRefGoogle Scholar
  80. Nosil P, Harmon LJ, Seehausen O (2009) Ecological explanations for (incomplete) speciation. Trend Ecol Evol 24:145–156.  https://doi.org/10.1016/j.tree.2008.10.011 CrossRefGoogle Scholar
  81. Nussey DH, Postma E, Gienapp P, Visser ME (2005) Selection on heritable phenotypic plasticity in a wild bird population. Science 310:304–306.  https://doi.org/10.1126/science.1117004 CrossRefPubMedGoogle Scholar
  82. Ocampo G, Columbus JT (2012) Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulaceae). Molec Phylogen Evol 63:97–112CrossRefGoogle Scholar
  83. Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol Evol 3:437–449.  https://doi.org/10.1002/ece3.426 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ovaskainen O, Hanski I (2003) Extinction threshold in metapopulation models. Ann Zoo Fenn 40:81–97Google Scholar
  85. Paz-Vinas I, Loot G, Hermoso V, Veyssiere C, Poulet N, Grenouillet G, Blanchet S (2018) Systematic conservation planning for intra-specific genetic diversity. Proc Roy Soc B Biol Sci 285:20172746.  https://doi.org/10.1098/rspb.2017.2746 CrossRefGoogle Scholar
  86. Pearman PB, D’Amen M, Graham CH, Thuiller W, Zimmermann NE (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33:990–1003.  https://doi.org/10.1111/j.1600-0587.2010.06443.x CrossRefGoogle Scholar
  87. Peterson ML, Doak DF, Morris WF (2019) Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Global Change Biol 25:775–793.  https://doi.org/10.1111/gcb.14562 CrossRefGoogle Scholar
  88. Pettengill JB, Moeller DA (2012) Tempo and mode of mating system evolution between incipient Clarkia species. Evolution 66:1210–1225CrossRefGoogle Scholar
  89. Pimm SL et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752.  https://doi.org/10.1126/science.1246752 CrossRefPubMedGoogle Scholar
  90. Pio DV et al (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biol 20:1538–1549.  https://doi.org/10.1111/gcb.12524 CrossRefGoogle Scholar
  91. Porter JM, Johnson LA, Wilken D (2010) Phylogenetic systematics of Ipomopsis (Polemoniaceae): relationships and divergence times estimated from chloroplast and nuclear DNA sequences. Syst Bot 35:181–2000CrossRefGoogle Scholar
  92. Purvis A (2008) Phylogenetic approaches to the study of extinction. Annual Rev Ecol Evol Syst 39:301–319.  https://doi.org/10.1146/annurev-ecolsys-063008-102010 CrossRefGoogle Scholar
  93. Purvis A et al (2000) Predicting extinction risk in declining species. Proc Roy Soc London Ser B Biol Sci 26:1947–1952.  https://doi.org/10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  94. Rolland J, Condamine FL, Jiguet F, Morlon H (2014) Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol 12:e1001775.  https://doi.org/10.1371/journal.pbio.1001775 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Rosenblum EB et al (2012) Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol Biol 39:255–261.  https://doi.org/10.1007/s11692-012-9171-x CrossRefPubMedPubMedCentralGoogle Scholar
  96. Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ, Soberón J, Lieberman BS (2015) Niche breadth and geographic range size as determinants of species survival on geological time scales. Global Ecol Biogeogr 24:1159–1169.  https://doi.org/10.1111/geb.12333 CrossRefGoogle Scholar
  97. Scheele BC, Foster CN, Banks SC, Lindenmayer DB (2017) Niche contractions in declining species: mechanisms and consequences. Trends Ecol Evol 32:346–355.  https://doi.org/10.1016/j.tree.2017.02.013 CrossRefPubMedGoogle Scholar
  98. Schluter D (2016) Speciation, ecological opportunity, and latitude. Amer Naturalist 187:1–18.  https://doi.org/10.1086/684193 CrossRefGoogle Scholar
  99. Selwood KE et al (2014) The effects of climate change and land use change on demographic rates and population viability. Biol Rev Cambridge Philos Soc 90:837–853.  https://doi.org/10.1111/brv.12136 CrossRefPubMedGoogle Scholar
  100. Serrano M, Carbaja R (2011) Omphalodes littoralis ssp. gallaecica. In: The IUCN red list of threatened species. Version 2011.1. Availale at: http://www.iucnredlist.org
  101. Skelly DK et al (2007) Evolutionary responses to climate change. Conservation Biol 21:1353–1355.  https://doi.org/10.1111/j.1523-1739.2007.00764.x CrossRefGoogle Scholar
  102. Slayter RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114.  https://doi.org/10.1111/ele.12140 CrossRefGoogle Scholar
  103. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes 9:901–911.  https://doi.org/10.1007/s11295-013-0596-x CrossRefGoogle Scholar
  104. Sork VL, Gugger PF, Chen J-M, Werth S (2016) Evolutionary lessons from California plant phylogeography. Proc Natl Acad Sci USA 113:8064–8071.  https://doi.org/10.1073/pnas.1602675113 CrossRefPubMedGoogle Scholar
  105. Stanton JC et al (2014) Warning times for species extinctions due to climate change. Global Change Biol.  https://doi.org/10.1111/gcb.12721 CrossRefGoogle Scholar
  106. Stewart JR (2009) The evolutionary consequence of the individualistic response to climate change. J Evol Biol 22:2363–2375.  https://doi.org/10.1111/j.1420-9101.2009.01859.x CrossRefPubMedGoogle Scholar
  107. Stewart JR, Lister AM, Barnes I, Dalen L (2010) Refugia revisited: individualistic responses of species in space and time. Proc Biol Sci 277:661–671.  https://doi.org/10.1098/rspb.2009.1272 CrossRefPubMedGoogle Scholar
  108. Thomas CD et al (2008) Where within a geographical range do species survive best? A matter of scale. Insect Conservation Diversity 1:2–8.  https://doi.org/10.1111/j.1752-4598.2007.00001.x CrossRefGoogle Scholar
  109. Thomas CD et al (2011) A framework for assessing threats and benefits to species responding to climate change. Methods Ecol Evol 2:125–142.  https://doi.org/10.1111/j.2041-210X.2010.00065.x CrossRefGoogle Scholar
  110. Thornhill AH et al (2017) Spatial phylogenetics of the California flora. BMC Biol 15:96.  https://doi.org/10.1186/s12915-017-0435-x CrossRefPubMedPubMedCentralGoogle Scholar
  111. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534.  https://doi.org/10.1038/nature09705 CrossRefPubMedGoogle Scholar
  112. Uehara K, Tanaka N, Momohara A, Zhou Z-K (2006) Genetic diversity of an endangered aquatic plant. Potamogeton lucens ssp. sinicus. Aquatic Bot 85:350–354.  https://doi.org/10.1016/j.aquabot.2006.06.008 CrossRefGoogle Scholar
  113. Wan Q, Zheng Z, Benito-Garzon M, Petit RJ (2018) Inconsistent inter- and intraspecific differentiation of climate envelopes in a subtropical tree. J Pl Ecol 12:176–185.  https://doi.org/10.1093/jpe/rty007 CrossRefGoogle Scholar
  114. Waples R (1995) Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. In: Nielsen J, Powers G (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation. American Fisheries Society, BethesdaGoogle Scholar
  115. Weir JT (2014) Environmental harshness, latitude and incipient speciation. Mol Ecol 23:251–253CrossRefGoogle Scholar
  116. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49.  https://doi.org/10.1016/j.tree.2014.10.009 CrossRefPubMedGoogle Scholar
  117. Wiens JJ et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:10–1324.  https://doi.org/10.1111/j.1461-0248.2010.01515.x CrossRefGoogle Scholar
  118. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annual Rev Ecol Evol Syst 37:433–458.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110145 CrossRefGoogle Scholar
  119. Xie L, Wagner WL, Ree R, Berry PA, Wen J (2009) Molecular phylogeny, divergence time estimates, and historical biogeography of Circaea (Onagraceae) in the Northern Hemisphere. Molec Phylogen Evol 53:995–1009CrossRefGoogle Scholar
  120. Zhang J, Nielsen SE, Stolar J, Chen Y, Thuiller W (2015) Gains and losses of plant species and phylogenetic diversity for a northern high-latitude region. Diversity Distrib 21:1441–1454.  https://doi.org/10.1111/ddi.12365 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Integrative BiologyUniversity of TexasAustinUSA

Personalised recommendations