Plant Systematics and Evolution

, Volume 305, Issue 8, pp 597–609 | Cite as

Morpho-anatomical differentiation and genome size variation in three ploidy levels within the B7 cytotype of Prospero autumnale (Hyacinthaceae) complex from the Balkan Peninsula and Pannonian Basin

  • Ana Vestek
  • Marek SlovákEmail author
  • Hanna Weiss-Schneeweiss
  • Eva M. Temsch
  • Jadranka Luković
  • Jaromír Kučera
  • Goran Anačkov
Original Article
Part of the following topical collections:
  1. Plants of the Balkan Peninsula in Space and Time


Prospero autumnale (Hyacinthaceae) is taxonomically intricate geophyte species complex with a circum-Mediterranean distribution. In contrast to the extraordinary karyological diversity within P. autumnale complex, morphological variation is limited, and thus, reliable taxonomically diagnostic traits are absent. This investigation addresses whether different ploidy levels within cytotype B7 can be distinguished morpho-anatomically. Populations of B7 cytotype from the Balkan Peninsula and Pannonian Basin were examined. Karyological variation was analyzed, and genome size measurements via flow cytometry were taken for selected individuals from each population. Morpho-anatomical analyses were based on 29 anatomical and 25 morphological traits. Multivariate morphometric analyses revealed significant differences between the three ploidy levels, and this may assist in the identification of plant ploidy level. Although the diploids were the most distinct group, some differences were also found between tetraploids and hexaploids. Genome size variation was found within diploids and tetraploids, and some downsizing was observed in hexaploids. This is the first evaluation of morpho-anatomical variation of cytotype B7 in the P. autumnale complex using a multivariate morphometric approach; further taxonomic and evolutionary studies in this taxonomically complex group are needed.


Balkans Genome size Multivariate morphometrics Ploidy levels Prospero autumnale 



This study was funded by the Ministry of Education, Science and Technological Development of Republic of Serbia (Project No. 173030) and by the Austrian Federal Ministry of Education, Science and Research (BMBWF), the Austrian Agency for International Mobility and Cooperation in Education, Science and Research (OeAD-GmbH) and the Centre for International Cooperation and Mobility (ICM) (Ernst Mach Grant program). The authors would like to thank Norbert Bauer (Hungarian Natural History Museum, Budapest), Bojana Bokić, Jelena Knežević and Boris Radak (University of Novi Sad, Faculty of Sciences) for the assistance in field work and Bojan Zlatković (University of Niš, Faculty of Sciences and Mathematics) for providing information on localities of P. autumnale in southern Serbia. We are also deeply thankful to Professor John Parker (University of Cambridge) for language improvements. For valuable comments of the two anonymous reviewers, the authors are appreciative.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2019_1581_MOESM1_ESM.pdf (268 kb)
Supplementary material 1 (PDF 267 kb)
606_2019_1581_MOESM2_ESM.pdf (406 kb)
Supplementary material 2 (PDF 406 kb)
606_2019_1581_MOESM3_ESM.pdf (258 kb)
Supplementary material 3 (PDF 258 kb)
606_2019_1581_MOESM4_ESM.pdf (249 kb)
Supplementary material 4 (PDF 249 kb)
606_2019_1581_MOESM5_ESM.pdf (350 kb)
Supplementary material 5 (PDF 349 kb)
606_2019_1581_MOESM6_ESM.pdf (357 kb)
Supplementary material 6 (PDF 356 kb)
606_2019_1581_MOESM7_ESM.pdf (292 kb)
Supplementary material 7 (PDF 291 kb)


  1. Ainsworth CC (1980) The population cytology of Scilla autumnalis. PhD Thesis, University of London, LondonGoogle Scholar
  2. Ainsworth CC, Parker JS, Horton DM (1983) Chromosome variation and evolution in Scilla autumnalis. In: Brandham PE, Bennett MD (eds) Kew Chromosome Conference II. George Allen & Unwin, London, pp 261–268Google Scholar
  3. Almeida Da Silva RM, Crespi AL (2013) Scilla L. In: Rico E et al (eds) Flora Iberica. Plantas vasculares de la Península Ibérica e Islas Baleares XX. Liliaceae-Agavaceae. Real Jardín Botánico. CSIC, Madrid, pp 145–156Google Scholar
  4. Baksay L (1956) Cytotaxonomical studies on the flora of Hungary. Ann Hist Nat Mus Natl Hung 7:321–334Google Scholar
  5. Balao F, Herrera J, Talavera S (2011) Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol 192:256–265. CrossRefGoogle Scholar
  6. Battaglia E (1957) Scilla autumnalis L. Biotipi 2n, 4n, 6n e loro distribuzione geografica. Caryologia 10:75–95. CrossRefGoogle Scholar
  7. Battaglia E (1964) Scilla autumnalis L.: Nuovi Reperti di Biotipi Cariologici 2n, 4n, 6n. Caryologia 17:557–565. CrossRefGoogle Scholar
  8. Bretagnolle F, Thompson JD, Lumaret R (1995) The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata L. Ann Bot (Oxford) 76:607–615. CrossRefGoogle Scholar
  9. Brullo S, Guglielmo A, Pavone P, Salmeri C (2007) Indagine biosistematica su Scilla s.l. in Italia e generi affini (Hyacinthaceae). Inform Bot Ital 39:165–169Google Scholar
  10. Brullo C, Brullo S, Giusso del Galdo G, Pavone P, Salmeri C (2009) Prospero hierae (Hyacinthaceae), a new species from Marettimo Island (Sicily). Phyton (Horn) 49:93–104Google Scholar
  11. Brunken JN, Estes JR (1975) Cytological and morphological variation in Panicum virgatum L. SW Naturalist 19:379–385. CrossRefGoogle Scholar
  12. Comai L (2005) The advantages and disadvantages of being polyploidy. Nat Rev Genet 6:836–846. CrossRefGoogle Scholar
  13. Contandriopoulos J, Zevaco-Schmitz C (1989) À propos d’un endémique cyrno-sarde méconnu: Scilla corsica Boullu. Candollea 44:394–401Google Scholar
  14. Cuénod A (1954) Flore analytique et synoptique de la Tunisie, Cryptogames vasculaires, Gymnospermes et Monocotylédones. Ofice de l’Expérimentationet de la Vulgarisation Agricoles, TunisGoogle Scholar
  15. Diklić N (1975) Scilla L. In: Josifović M (ed) Flora SR Srbije VII. SANU, Beograd, pp 539–544 (in Serbian)Google Scholar
  16. Ebert I, Greilhuber J, Speta F (1996) Chromosome banding and genome size differentiation in Prospero (Hyacinthaceae): diploids. Pl Syst Evol 203:143–177. CrossRefGoogle Scholar
  17. Emadzade K, Jang T, Macas J, Kovařík A, Novák P, Parker J, Weiss-Schneeweiss H (2014) Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann Bot (Oxford) 114:1597–1608. CrossRefGoogle Scholar
  18. Flatscher R, Escobar García P, Hülber K, Sonnleitner M, Winkler M, Saukel J, Schneeweiss GM, Schönswetter P (2015) Understimated diversity in one of the world’s best studied mountain ranges: The polyploid complex of Senecio carniolicus (Asteraceae) contains four species in the European Alps. Phytotaxa 213:001–021. CrossRefGoogle Scholar
  19. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. CrossRefGoogle Scholar
  20. Geraci A, Schicchi R (2002) Cytogeographical investigation of Scilla autumnalis (Hyacinthaceae) in Sicily. Fl Medit 12:177–182Google Scholar
  21. Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655. CrossRefGoogle Scholar
  22. Greilhuber J, Doležel J, Lysák M, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot (Oxford) 95:255–260. CrossRefGoogle Scholar
  23. Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells, analysis of genes, chromosomes and genomes. Wiley, Weinheim, pp 67–101CrossRefGoogle Scholar
  24. Guillén A, Ruiz Rejón M (1984) Structural variability and chromosome numbers variation in natural populations of Scilla autumnalis (Liliaceae). Pl Syst Evol 144:201–207. CrossRefGoogle Scholar
  25. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:9Google Scholar
  26. Hayek A (1933) Prodromus Florae peninsulae Balcanicae, VI. Verlag des Repertoriums, Fabeck, Dehlembei BerlinGoogle Scholar
  27. Hodálová I, Mereďa P, Kučera J, Marhold K, Kempa M, Olšavská K, Slovák M (2015) Origin and systematic position of Jacobea vulgaris (Asteraceae) octoploids: genetic and morphological evidence. Pl Syst Evol 301:1517–1541. CrossRefGoogle Scholar
  28. Hong DY (1982) Cytotype variation and polyploidy in Scilla autumnalis L. (Liliaceae). Hereditas 97:227–235. CrossRefGoogle Scholar
  29. Institute SAS (2000) SAS OnlineDoc, version 8. SAS Institute, Cary. Available at: Google Scholar
  30. Jang TS (2013) Chromosomal evolution in Prospero autumnale complex. PhD Thesis, University of Vienna, ViennaGoogle Scholar
  31. Jang TS, Emadzade K, Parker J, Temsch EM, Leitch AR, Speta F, Weiss-Schneeweiss H (2013) Chromosomal diversification and karyotype evolution of diploids in the cytologically diverse genus Prospero (Hyacinthaceae). BMC Evol Biol 13:136. CrossRefGoogle Scholar
  32. Jang TS, Parker JS, Weiss-Schneeweiss H (2015) Structural polymorphisms and distinct genomic composition suggest recurrent origin and ongoing evolution of B chromosomes in the Prospero autumnale complex (Hyacinthaceae). New Phytol 210:669–679. CrossRefGoogle Scholar
  33. Jang TS, Parker JS, Emadzade K, Temsch EM, Leitch AR, Weiss-Schneeweiss H (2018a) Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the monocot Prospero. Frontiers Pl Sci 9:433. CrossRefGoogle Scholar
  34. Jang TS, Parker JS, Weiss-Schneeweiss H (2018b) Euchromatic supernumerary chromosomal segments-remnants of ongoing karyotype restructuring in the Prospero autumnale complex? Genes 9:468. CrossRefGoogle Scholar
  35. Kennedy BF, Sabara HA, Haydon D, Husband BC (2006) Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150:398–408. CrossRefGoogle Scholar
  36. Kitanov B (1964) Scilla L. In: Ĭordanov D (ed) Flora na Narodna Republika Bŭlgaria II. Sofia, BANU, pp 273–277 (in Bulgarian)Google Scholar
  37. Klecka WR (1980) Discriminant analysis. Sage University papers. Series Quantitative Application in the Social Science. 19. Sage Publications, Beverly HillsGoogle Scholar
  38. Koutecký P, Štěpánek J, Baďurová T (2012) Differentiation between diploid and tetraploid Centaurea phrygia: mating barriers, morphology and geographic distribution. Preslia 84:1–32Google Scholar
  39. Krzanowski WJ (1990) Principles of multivariate analysis. Clarendon Press, OxfordGoogle Scholar
  40. Kučera J, Marhold K, Lihová J (2010) Cardamine maritima group (Brassicaceae) in the amphi-Adriatic area: a hotspot of species diversity revealed by DNA sequences and morphological variation. Taxon 59:148–164. CrossRefGoogle Scholar
  41. Kuzmanović N, Comanescu P, Frajman B, Lazarević M, Paun O, Schönswetter P, Lakušić D (2013) Genetic, cytological and morphological differentiation within the Balkan-Carpathian Sesleria rigida sensu Fl. Eur. (Poaceae): a taxonomically intricate tetraploid-octoploid complex. Taxon 62:458–472. CrossRefGoogle Scholar
  42. Legendre P, Legendre L (1998) Numerical ecology. Second English edition. Developments in environmental modelling 20. Elsevier, AmsterdamGoogle Scholar
  43. Leitch IJ, Bennet MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663. CrossRefGoogle Scholar
  44. Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104. CrossRefGoogle Scholar
  45. Maire R (1958) Scilla L. In: Quézel P, Guinochet M (eds) Flore de l’Afrique du Nord: Maroc, Algérie, Tunisie, Tripolitaine, Cyrénaïqueet Sahara, V edn. Le chevalier, Paris, pp 127–155Google Scholar
  46. Mandáková T, Münzbergová Z (2008) Morphometric and genetic differentiation of diploid and hexaploid populations of Aster amellus agg. in a contact zone. Pl Syst Evol 274:155–170. CrossRefGoogle Scholar
  47. McNeill J (1980) Scilla L. In: Tutin TG et al (eds) Flora Europaea V. Cambridge University Press, Cambridge, pp 41–43Google Scholar
  48. Nyárády EI (1966) Scilla L. In: Săvulescu T (ed) Flora Reipublicae Socialisticae Romănia XI. Academiae Reipublicae Socialisticae Romănia, Bucuresti, pp 309–316Google Scholar
  49. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Rev Genet 34:401–443. CrossRefGoogle Scholar
  50. Otto F, Oldiges H, Göhde W, Jain VK (1981) Flow cytometric measurement of nuclear DNA content variations as a potential in vivo mutagenicity test. Cytometry 2:189–191. CrossRefGoogle Scholar
  51. Parker JS, Lozano R, Taylor S, Ruiz Rejón M (1991) Chromosomal structure of populations of Scilla autumnalis in Iberian Peninsula. Heredity 67:287–297. CrossRefGoogle Scholar
  52. Ramsey J, Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Philos Trans Ser B 369:20130352. CrossRefGoogle Scholar
  53. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Rev Ecol Syst 29:467–501. CrossRefGoogle Scholar
  54. Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley, New York. CrossRefGoogle Scholar
  55. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRefGoogle Scholar
  56. Siljak-Yakovlev S, Pustahija F, Šolić EM, Bogunić F, Muratović E, Bašić N, Catrice O, Brown SC (2010) Towards a genome size and chromosome number database of Balkan Flora: C-values in 343 taxa with novel values for 242. Advanced Sci Lett 3:190–213. CrossRefGoogle Scholar
  57. Slovák M, Kučera J, Marhold K, Zozomová-Lihová J (2012) The morphological and genetic variation in the polymorphic species Picris hieracioides (Compositae, Lactuceae) in Europe strongly contrasts with traditional taxonomical concepts. Syst Bot 21:258–278. CrossRefGoogle Scholar
  58. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annual Rev Pl Biol 60:561–588. CrossRefGoogle Scholar
  59. Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30. Google Scholar
  60. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Amer J Bot 96:336–348. CrossRefGoogle Scholar
  61. Soltis PS, Blaine Maschant D, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Developm 35:119–125. CrossRefGoogle Scholar
  62. Soó R (1973) A Magyar Flóra és vegetáció Rendszertani – Növényföldrajzi Kézikönyve V. Akadémiai Kiadó, Budapest, HungaryGoogle Scholar
  63. Španiel S, Marhold K, Hodálová I, Lihová J (2008) Diploid and tetraploid cytotypes of Centaurea stoebe (Asteraceae) in Central Europe: Morphological differentiation and cytotype distribution patterns. Folia Geobot 43:131–158. CrossRefGoogle Scholar
  64. Španiel S, Marhold K, Filová B, Zozomová-Lihová J (2011) Genetic and morphological variation in the diploid-polyploid Alyssum montanum in Central Europe: taxonomic and evolutionary considerations. Pl Syst Evol 294:1–25. CrossRefGoogle Scholar
  65. Speta F (1982) Die Gattungen Scilla L. s.str. und Prospero Salisb. Im Pannonischen Raum. Veröffentl Intern Clusius – Forschungsges Güssing 5:1–19Google Scholar
  66. Speta F (1986) Über die herbstblühendenscillen des Mittelmeerraumes. Linzer Biol Beitr 18:399–416Google Scholar
  67. Speta F (2000) Beitrag zur Kenntnis der Gattung Prospero Salisb. (Hyacinthaceae) auf der griechischen Insel Kreta. Linzer Biol Beitr 32:1323–1326Google Scholar
  68. Speta F (2010) Prospero Salisb. in vorlinnéischer Zeit und der Typus von Scilla autumnalis L. (Hyacinthaceae-Hyacintheae). Verh Zool-Bot Ges Österreich 147:159–180Google Scholar
  69. Spies JJ (1982) Stomatal area as an anatomical criterion for the determination of chromosome number in the Eragrostis curvula complex. Bothalia 14:119–122. Google Scholar
  70. Suda J, Krahulcova A, Travnicek P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450. CrossRefGoogle Scholar
  71. Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80Google Scholar
  72. Thompson JN, Nuismer SL, Merg K (2004) Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol J Linn Soc 82:503–510. CrossRefGoogle Scholar
  73. Tzanoudakis D, Kypriotakis Z (1998) A New Polyploid Scilla (Liliaceae) from the Cretan area (Greece). Folia Geobot 33:103–108. CrossRefGoogle Scholar
  74. Vamosi JC, Goring SJ, Kennedy BF, Mayberry CM, Neame LA, Tunbridge ND, Elle E (2007) Pollination, floral display, and the ecological correlates of polyploidy. Functional ecosystems and communities. Global Sci Books 1:1–9Google Scholar
  75. Van Laere K, França S, Vansteenkiste H, Van Huylenbroeck J, Steppe K, Van Labeke MC (2011) Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol Pl 33:1149–1156. CrossRefGoogle Scholar
  76. Vaughan HE, Taylor S, Parker JS (1997) The ten cytological races of the Scilla autumnalis species complex. Heredity 79:371–379. CrossRefGoogle Scholar
  77. Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenetic Genome Res 140:137–150. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Plant Sciences and Biodiversity CenterSlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.Department of BotanyCharles UniversityPragueCzech Republic
  4. 4.Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria

Personalised recommendations