Diurnal versus nocturnal pollinators and the effect of anthesis onset on the reproductive success of Agarista revoluta (Ericaceae)

  • Marina M. MoreiraEmail author
  • Amanda S. Miranda
  • Bárbara de Sá-Haiad
  • Lygia R. Santiago-Fernandes
  • Heloisa A. de Lima
Original Article


Differences in the effectiveness of diurnal and nocturnal visitors could imply specialization in plant–pollinator interactions. Consequently, floral traits (e.g. period of anthesis onset, colours, scent, and time of nectar production) could reflect adaptation to the most effective pollinator. Despite the period of anthesis onset being frequently reported as an important factor for plant reproductive success, no previous study experimentally evaluated this effect. Flowers of Agarista revoluta (Ericaceae) present anthesis both at day and at night and are visited by diurnal and nocturnal pollinators. We conducted an exclusion experiment in these flowers in order to evaluate the effectiveness of nocturnal versus diurnal pollinators and the effect of the period of anthesis onset on plant reproductive success. We also measured the nectar production in these two times of the day and analysed the structure of nectaries and osmophores in order to assess the relationship between these floral traits and the foraging activity of the most effective pollinator. Nocturnal moths were the most effective pollinators, as flowers visited by this group produced more fruits than those visited by diurnal pollinators. Nectar was produced by a nectary at the ovary base, and this secretion was higher at night. Although more flowers opened at night, the period of anthesis onset had no effect on plant reproductive success or on nectar production. Our results indicate that A. revoluta presents a floral adaptation to nocturnal moths, suggesting specialization to these pollinators and that there is no effect of the period of anthesis onset on plant reproductive success.


Anatomy Moths Nectary Osmophore Restinga 



We thank A. Rodarte, A.L. Lemos, and C. Suizane for field support, N.A.C. Marino and A. MacDonald for statistical support, and the Instituto Nacional de Metereologia (INMET) for climate data. This study was supported by the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) as part of the master’s dissertation of the first author developed in the Programa de Pós-graduação em Botânica, Museu Nacional, UFRJ.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aguilar-Rodríguez PA, Krömer T, García-Franco JG, MacSwiney MCG (2016) From dusk till dawn: nocturnal and diurnal pollination in the epiphyte Tillandsia heterophylla (Bromeliaceae). Pl Biol (Stuttgart) 18:37–45. CrossRefGoogle Scholar
  2. Amorim FW, Galetto L, Sazima M (2013) Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Pl Biol (Stuttgart) 15:317–327. CrossRefGoogle Scholar
  3. Avila RS, Freitas L (2011) Frequency of visits and efficiency of pollination by diurnal and nocturnal lepidopterans for the dioecious tree Randia itatiaiae (Rubiaceae). Austral J Bot 59:176–184. CrossRefGoogle Scholar
  4. Bates D, Bolker BM, Mächler M, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48CrossRefGoogle Scholar
  5. Benning JW (2015) Odd for an Ericad: nocturnal pollination of Lyonia lucida (Ericaceae). Amer Midl Naturalist 174:204–217. CrossRefGoogle Scholar
  6. Cutler GC, Reeh KW, Sproule JM, Ramanaidu K (2012) Berry unexpected: nocturnal pollination of blueberry. Canad J Pl Sci 92:707–711. CrossRefGoogle Scholar
  7. Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest Ltd, CambridgeGoogle Scholar
  8. Dar S, Coro AM, Valient-Banuet A (2006) Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico. Ann Bot (Oxford) 97:423–427. CrossRefGoogle Scholar
  9. Dötterl S, Jahreiß K, Jhumur US, Jürgens A (2012) Temporal variation of flower scent in Silene otites (Caryophyllaceae): a species with a mixed pollination system. Bot J Linn Soc 169:447–460. CrossRefGoogle Scholar
  10. Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, OxfordGoogle Scholar
  11. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Amer J Bot 55:123–142. CrossRefGoogle Scholar
  12. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Rev Ecol Evol Syst 35:375–403. CrossRefGoogle Scholar
  13. Freitas L (2013) Concepts of pollinator performance: is a simple approach necessary to achieve a standardized terminology? Brazil J Bot 36:3–8. CrossRefGoogle Scholar
  14. Freitas L, Galetto L, Sazima M (2006) Pollination by hummingbirds and bees in eight syntopic species and a putative hybrid of Ericaceae in Southeastern Brazil. Pl Syst Evol 258:49–61. CrossRefGoogle Scholar
  15. Gahan PB (1984) Plant histochemistry and cytochemistry—an introduction. Academic Press, LondonGoogle Scholar
  16. Giménez-Benavides L, Dötterl S, Jürgens A, Escudero A, Iriondo JM (2007) Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a SileneHadena interaction. Oikos 116:1461–1472. Google Scholar
  17. Jensen WA (1962) Botanical histochemistry: principles and practice. W.H. Freeman & Co., San FranciscoGoogle Scholar
  18. Johnson KA, McQuillan PB, Kirkpatrick JB (2011) Nocturnal mammals, diurnal lizards, and the pollination ecology of the cryptic flowering Acrotriche serrulata (Ericaceae). Int J Pl Sci 172:173–182. CrossRefGoogle Scholar
  19. Kearns CA, Inouye D (1993) Techniques for pollination biologists. University Press of Colorado, ColoradoGoogle Scholar
  20. Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman T-L (2005) Pollen limitation of plant reproduction: pattern and process. Annual Rev Ecol Evol Syst 36:467–497. CrossRefGoogle Scholar
  21. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) LmerTest package: test in linear mixed effects models. J Stat Soft 82:1–26CrossRefGoogle Scholar
  22. Langeron M (1949) Precis de microscopie. Masson & Cie, ParisGoogle Scholar
  23. Larson BM, Barrett SC (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520. CrossRefGoogle Scholar
  24. Lenth RV (2016) Least-Squares means: the R package lsmeans. J Stat Soft 69:1–33CrossRefGoogle Scholar
  25. Luteyn JL (2002) Diversity, adaptation and endemism in Neotropical Ericaceae: biogeographical patters in the Vaccinieae. Bot Rev 68:55–87.;2 CrossRefGoogle Scholar
  26. Maclean RC, Ivemey-Cook WR (1952) Textbook of practical botany. Longmans Greenands Co., LondonGoogle Scholar
  27. Miyake T, Yahara T (1999) Theoretical evaluation of pollen transfer by nocturnal and diurnal pollinators: when should a flower open? Oikos 86:233–240CrossRefGoogle Scholar
  28. Monteiro RF, Macedo VM (2000) Flutuação populacional de insetos fitófagos em restinga. In: Esteves FdA, Lacerda LD (eds) Ecologia de Restingas e Lagoas Costeiras, Núcleo de pesquisas ecológicas de Macaé (NUPEM/UFRJ) Macaé, Rio de Janeiro, pp 77–88Google Scholar
  29. Moreira MM, Miranda AS, de Lima HA (2017) Agarista revoluta (Ericaceae): a generalist plant with self-compatible and self-incompatible individuals. Flora 234:7–14. CrossRefGoogle Scholar
  30. Navarro L (1999) Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae). Biotropica 31:618–625. CrossRefGoogle Scholar
  31. Navarro L, Ayensa G, Guitián P (2007) Adaptation of floral traits and mating system to pollinator unpredictibility: the case of Disterigma stereophyllum (Ericaceae) in southwestern Colombia. Pl Syst Evol 266:165–174. CrossRefGoogle Scholar
  32. Ortega-Baes P, Saravia M, Sühring S, Godínes-Alvarez H, Zamar M (2011) Reproductive biology of Echinopsister scheckii (Cactaceae): the role of nocturnal and diurnal pollinators. Pl Biol (Stuttgart) 13:33–40. CrossRefGoogle Scholar
  33. Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: a short review. Pl Syst Evol 238:7–21. CrossRefGoogle Scholar
  34. Perrin P (1984) Evolução da costa fluminense entre as Pontas de Itacoatiara e Negra: Preenchimento e restinga. In: Lacerda LD, Araújo DSD, Cerqueira R, Turcq B (eds) Restingas: origem, estrutura, processos. Universidade Federal Fluminense/CEUFF, Niterói, pp 65–74Google Scholar
  35. Pettersson MW (1991) Pollination by guild of fluctuating moth population: option for unspecialization in Silene vulgaris. J Ecol 79:591–604CrossRefGoogle Scholar
  36. Primack RB (1985) Longevity of individual flowers. Annual Rev Ecol Evol Syst 16:15–35. CrossRefGoogle Scholar
  37. R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna. Available at: Accessed 15 Mar 2018
  38. Rocha CFD, Bergallo HG, Van Sluys M, Alves MAS, Jamel CE (2007) The remnants of restinga habitats in the Brazilian Atlantic Forest of Rio de Janeiro State, Brazil: habitat loss and risk of disappearance. Brazil J Biol 67:263–273. CrossRefGoogle Scholar
  39. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Ann Bot (Oxford) 90:517–524. CrossRefGoogle Scholar
  40. Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315. CrossRefGoogle Scholar
  41. Schneemilch M, Williams C, Kokkinn M (2011) Floral visitation in the Australian native shrub genus Acrotriche R. Br. (Ericaceae) an abundance of ants (Formicidae). Austral J Entomol 50:130–138. CrossRefGoogle Scholar
  42. Sletvold N, Trunschke J, Wimmergren C, Ågren J (2012) Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea. Ecology 93:1880–1891. CrossRefGoogle Scholar
  43. Stebbins GL (1970) Adaptative radiation of reproductive characteristics in angiosperms. I: pollination mechanisms. Annual Rev Ecol Evol Syst 1:307–326. CrossRefGoogle Scholar
  44. Turner RC, Midgley JJ, Barnard P, Simmons RE, Johnson SD (2012) Experimental evidence for bird pollination and corolla damage by ants in the short-tubed flowers of Erica halicacaba (Ericaceae). S African J Bot 79:25–31CrossRefGoogle Scholar
  45. Wolff D, Braun M, Liede S (2003) Nocturnal versus diurnal pollination success in Isertia laevis (Rubiaceae): a sphingophilous plant visited by hummingbirds. Pl Biol (Stuttgart) 5:71–78. CrossRefGoogle Scholar
  46. Wolowski M, Ashman T-L, Freitas L (2014) Meta-analysis of pollen limitation reveals the relevance of pollination generalization in the Atlantic forest of Brazil. PLoS ONE 9:e89498. CrossRefGoogle Scholar
  47. Young HJ (2002) Diurnal and nocturnal pollination of Silene alba (Caryopyllaceae). Amer J Bot 89:433–440. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Botânica, Museu NacionalUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations