Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 2, pp 169–180 | Cite as

Morphometric analysis and the distinction between Tibouchina hatschbachii and T. marumbiensis: morphological differentiation driven from the past

  • Fabiano R. MaiaEmail author
  • Renato Goldenberg
Original Article

Abstract

The taxonomic delimitation of Tibouchina hatschbachii and T. marumbiensis has been subject to some controversy. According to the original descriptions, plants from grasslands on sandstone areas were identified as T. hatschbachii, whereas plants from grasslands on granite as T. marumbiensis. Due to a considerable morphological overlap, T. marumbiensis has been recognized as a synonym of T. hatschbachii, which has yet to be quantitatively investigated in natural populations. Genetic studies have shown that recent geological movements in the Ribeira do Iguape valley (RIV) region have influenced these species distributions. These events generated two geographically structured genetic lineages, apparently separated by pre- and post-zygotic reproductive barriers, which may be reflected in the morphological variation found in them. In order to investigate these morphological patterns, twenty-two morphological characters were measured for 148 specimens from nine localities and evaluated using multivariate analyses. Our results do not support the synonymization of T. marumbiensis under T. hatschbachii. Two morphological groups structured by RIV were consistent in all analyses. Group I contains all populations on sandstone plus two populations on granite, all to the west of RIV; group II comprises two populations on granite, both to the east of RIV. We therefore suggest a new circumscription for T. hatschbachii and T. marumbiensis. In this case, T. hatschbachii would be represented by the populations to the west of RIV and recognized by the smaller floral and vegetative structures, whereas T. marumbiensis would be represented by the populations to the east of RIV, with larger floral and vegetative structures.

Keywords

Melastomataceae Multivariate analyses Numerical taxonomy Phenetics Plant morphology Species delimitation 

Notes

Acknowledgements

We thank “Instituto Ambiental do Paraná” (IAP), “Instituto Florestal de São Paulo” and “Companhia Paranaense de Energia” (COPEL) for the permits and access to the study areas and V. R. C. Maia for valuable help in the field. Special thanks are due to V. P. Zwiener, who generously helped us to construct the sampling map. The authors thank V. L. G. Brito, S. Koehler, A. Barbosa, C. Palma-Silva, M. I. Zucchi, P. E. A. M. Oliveira, A. P. Souza and T. Bochorny for useful comments on previous versions of the manuscript. Financial support was provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 457510/2014-5). CNPq also supported FRM’s Ph.D. scholarship and RG’s research productivity fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2018_1560_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. Alvares CA, Stape JL, Sentelhas PC, Golçalves JLM, Sparovek G (2014) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728CrossRefGoogle Scholar
  2. Angiolini C, Bonari G, Frignani F, Liriti G, Nannone F, Protano G, Landi M (2015) Ecological patterns of morphological variation in Italian populations of Romulea bulbocodium (Iridaceae). Flora 214:1–10.  https://doi.org/10.1016/j.flora.2015.05.001 CrossRefGoogle Scholar
  3. Barbosa AR, Fiorini CF, Silva-Pereira V, Mello-Silva R, Borba EL (2012) Geographical genetic structuring and phenotypic variation in the Vellozia hirsuta (Velloziaceae) ochlospecies complex. Amer J Bot 99:1477–1488.  https://doi.org/10.3732/ajb.1200070 CrossRefGoogle Scholar
  4. Batalha-Filho H, Waldschmidt AM, Campos LAO, Tavares MG, Fernandes-Salomão TM (2010) Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): incongruence between morphology and mitochondrial DNA. Apidologie 41:534–547CrossRefGoogle Scholar
  5. Biye EH, Cron GV, Balkwill K (2016) Morphometric delimitation of Gnetum species in Africa. Pl Syst Evol 302:1067–1082.  https://doi.org/10.1007/s00606-016-1317-3 CrossRefGoogle Scholar
  6. Boratynski A, Jasinska AK, Marcysiak K, Mazur M, Romo AM, Boratynska K, Sobierajska K, Iszkulo G (2013) Morphological differentiation supports the genetic pattern of the geographic structure of Juniperus thurifera (Cupressaceae). Pl Syst Evol 299:773–784.  https://doi.org/10.1007/s00606-013-0760-7 CrossRefGoogle Scholar
  7. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Austral J Bot 51:335–380CrossRefGoogle Scholar
  8. de Queiroz K (1998) The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 57–75Google Scholar
  9. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886.  https://doi.org/10.1080/10635150701701083 CrossRefPubMedGoogle Scholar
  10. Ellison AM, Buckley HL, Miller TE, Gotelli NJ (2004) Morphological variation in Sarracenia purpurea (Sarraceniaceae): geographic environmental, and taxonomic correlates. Amer J Bot 91:1930–1935.  https://doi.org/10.3732/ajb.91.11.1930 CrossRefGoogle Scholar
  11. Frontier S (1976) Etude de la decroissance des valeurs propres dans une analyze en composantes principales: comparison avec le module de baton bris6. J Exp Mar Biol Ecol 25:67–75CrossRefGoogle Scholar
  12. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338CrossRefGoogle Scholar
  13. Hart MW (2011) The species concept as an emergent property of population biology. Evolution 65:613–616.  https://doi.org/10.1111/j.1558-5646.2010.01202.x CrossRefPubMedGoogle Scholar
  14. Lambert SM, Borba EL, Machado MC (2006) Allozyme diversity and morphometrics of the endangered Melocactus glaucescens (Cactaceae), and investigation of the putative hybrid origin of Melocactus × albicephalus (Melocactus ernestii × M. glaucescens) in north-eastern Brazil. Pl Spec Biol 21:93–108CrossRefGoogle Scholar
  15. Legendre P, Legendre L (2012) Numerical ecology. Developments in environmental modelling, vol 24, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  16. Maia FR, Zwiener VP, Morokawa R, Silva-Pereira V, Goldenberg R (2017a) Phylogeography and ecological niche modeling uncover the evolutionary history of Tibouchina hatschbachii (Melastomataceae), a taxon restricted to the subtropical grasslands of South America. Bot J Linn Soc 183:616–632CrossRefGoogle Scholar
  17. Maia FR, Sujii SP, Silva-Pereira V, Goldenberg R (2017b) Naturally fragmented and isolated distribution in subtropical grassland patches affects genetic diversity and structure at different spatial scales: the case of Tibouchina hatschbachii, an endemic shrub from Brazil. Amer J Bot 104:1–11.  https://doi.org/10.3732/ajb.1700164 CrossRefGoogle Scholar
  18. Maia FR, Telles F, Goldenberg R (2018) Time and space affect the reproductive biology and phenology of Tibouchina hatschbachii (Melastomataceae), an endemic shrub from subtropical grasslands in Southern Brazil. Bot J Linn Soc 187:689–703.  https://doi.org/10.1093/botlinnean/boy039 CrossRefGoogle Scholar
  19. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  20. Melo MS, Fernandes LA, Coimbra AM, Ramos RGN (1989) O Graben (Terciário?) de Sete Barras, Vale do Ribeira do Iguape, SP. Revista Bras Geociênc 19:260–262Google Scholar
  21. Meyer FS, Guimarães PJF, Goldenberg R (2009) Uma nova espécie de Tibouchina Aubl. (Melastomataceae) e notas taxonômicas sobre o gênero no Estado do Paraná, Brasil. Hoehnea 36:139–147CrossRefGoogle Scholar
  22. Meyer FS, Guimarães PJF, Goldenberg R (2010) Tibouchina (Melastomataceae) do estado do Paraná, Brasil. Rodriguésia 61:615–638CrossRefGoogle Scholar
  23. Moraes DA, Cavalin PO, Moro RS, Oliveira RAC, Carmo MRB, Marques MCM (2016) Edaphic filters and the functional structure of plant assemblages in grasslands in southern Brazil. J Veg Sci 27:100–110.  https://doi.org/10.1111/jvs.12331 CrossRefGoogle Scholar
  24. Morellato LPC, Camargo MGG, Gressler E (2013) A review of plant phenology in South and Central America. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 91–113CrossRefGoogle Scholar
  25. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’ Hara RB et al (2013) Vegan: community ecology package. R package version 2.0-10. Available at: https://cran.r-project.org/web/packages/vegan/index.html. Accessed 9 Mar 2018
  26. Palestina RA, Sosa V (2002) Morphological variation in populations of Bletia purpurea (Orchidaceae) and description of the new species B. riparia. Brittonia 54:99–111CrossRefGoogle Scholar
  27. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson OK, Morgan HD, van der Heijden MGA, ter Steege Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167–234.  https://doi.org/10.1071/BT12225_CO CrossRefGoogle Scholar
  28. Pil MW, Boeger MRT, Pie M, Goldenberg R, Ostrensky A, Boeger WA (2012) Testing hypotheses for morphological differences among populations of Miconia sellowiana (Melastomataceae) in southern Brazil. Acta Sci Biol Sci 34:85–90.  https://doi.org/10.4025/actascibiolsci.v34i1.7580 CrossRefGoogle Scholar
  29. Pinheiro F, Barros F (2007) Epidendrum secundum Jacq. and E. denticulatum Barb. Rodr. (Orchidaceae): useful characters for their recognition. Hoehnea 34:563–570CrossRefGoogle Scholar
  30. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/. Accessed 27 Nov 2016
  31. Roberts DW (2013) labdsv: Ordination and multivariate analysis for ecology. R package version 2.0-10. Available at: http://CRAN.R-project.org/package=labdsv. Accessed 9 Mar 2018
  32. Rodrigues JF, van den Berg C, Abreu AG, Novello M, Veasey EA, Oliveira GCX, Koehler S (2015) Species delimitation of Cattleya coccinea and C. mantiqueirae (Orchidaceae): insights from phylogenetic and population genetics analyses. Pl Syst Evol 301:1345–1359.  https://doi.org/10.1007/s00606-014-1156-z CrossRefGoogle Scholar
  33. Rohlf FJ (2000) NTSYS-PC: numerical taxonomy and multivariate analysis system. Version 2.11f. Exeter Software, New YorkGoogle Scholar
  34. Saadi A (2002) Neotectônica da plataforma brasileira: esboço e interpretação preliminares. Geonomos 1:1–15Google Scholar
  35. Sapir Y, Shmida A, Fragman O, Comes HP (2002) Morphological variation of the Oncocyclus irises (Iris: Iridaceae) in the southern Levant. Bot J Linn Soc 139:369–382CrossRefGoogle Scholar
  36. Shmida A, Evenari M, Noy-Meir I (1986) Hot desert ecosystems: an integrated view. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot deserts and arid shrublands. Elsevier, Amsterdam, pp 379–387Google Scholar
  37. Smith TB, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Emán JP, Burney CW, Xie X, Harvey MG, Faircloth BC, Glenn TC, Derryberry EP, Prejean J, Fields S, Brumfield RT (2014) The drivers of tropical speciation. Nature 515:406–409.  https://doi.org/10.1038/nature13687 CrossRefGoogle Scholar
  38. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman & Co., San FranciscoGoogle Scholar
  39. Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11:33–40CrossRefGoogle Scholar
  40. Tarayre M, Bowman G, Schermann-Legionnet A, Barat M, Atlan A (2007) Flowering phenology of Ulex europaeus: ecological consequences of variation within and among populations. Evol Ecol 21:395–409.  https://doi.org/10.1007/s10682-006-9109-9 CrossRefGoogle Scholar
  41. Thiers B (2018) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at: http://sweetgum.nybg.org/ih. Accessed 11 Jan 2016
  42. Thorpe RS (1983) A review of the numerical methods for recognizing and realizing racial differentiation. In: Felsenstein J (ed) Numerical taxonomy. Springer, Heidelberg, pp 404–423CrossRefGoogle Scholar
  43. Tyteca D, Dufrene M (1994) Biostatistical studies of Western European allogamous populations of the Epipactis helleborine (L.) Crantz species group (Orchidaceae). Syst Bot 19:424–442CrossRefGoogle Scholar
  44. Wurdack JJ (1963) Melastomatáceas novas do estado do Paraná. Pap Avulsos Herb Hatschbach 4:1–3Google Scholar
  45. Wurdack JJ (1984) Certamen Melastomataceis XXXVII. Phytologia 55:131–147Google Scholar
  46. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice-Hall/Pearson, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Programa de Pós-Graduação em Botânica, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations