Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 1, pp 33–48 | Cite as

Systematics of Onobrychis sect. Heliobrychis (Fabaceae): morphology and molecular phylogeny revisited

  • Akram Kaveh
  • Shahrokh Kazempour-OsalooEmail author
  • Atefe Amirahmadi
  • Aliasghar Maassoumi
  • Gerald M. Schneeweiss
Original Article
  • 134 Downloads

Abstract

Onobrychis sect. Heliobrychis with ca. 30 species is one of the most species-rich sections of Onobrychis. It comprises predominantly perennials mainly distributed in Iran, Turkey, and Transcaucasia. In order to test the monophyly of the section and as well as its subsections and to clarify interspecific relationships, three non-coding chloroplast sequences and the nuclear ribosomal DNA internal transcribed spacer were employed. Phylogenetic analyses were performed by maximum parsimony, maximum likelihood, and Bayesian inference. Based on the combined data set, O. sect. Heliobrychis was retrieved as a well-supported monophyletic group sister to O. sect. Hymenobrychis. The annuals traditionally united in subsect. Persicae formed a paraphyletic group, whereas all perennials (the monotypic subsect. Szovitsianae nested within subsect. Boissierianae) assembled in a monophyletic group. Ancestral state reconstruction of morphological characters: life history, the absence/presence of stem, and the number of seed, indicated that annuality is plesiomorphic, whereas the absence of a stem and two-seeded pods is homoplasious in the section. Based on molecular phylogeny and morphological evidence, the taxonomy of some species of sect. Heliobrychis was re-examined. Therewith, O. aucheri subsp. aucheri was synonymized with O. heliocarpa, O. aucheri subsp. psammophila and O. aucheri subsp. teheranica were raised to species rank as O. psammophila and O. teheranica, respectively, and O. semnanensis was resurrected. Also as a complementary taxonomic treatment, a diagnostic key to the species of O. sect. Heliobrychis is supplied.

Keywords

Heliobrychis Irano-Anatolian hotspot Onobrychis Phylogeny Taxonomy 

Notes

Acknowledgements

This study was carried out with the financial support of the research council of the Tarbiat Modares University. We would like to thank the staff of several herbaria (W, MSB, B, FUMH, HKNRRC, HQNRRC, and TARI) to allow studying herbarium specimens and providing leaf materials, especially Dr. Vitek (W) and Eng. Joharchi (FUMH).

Supplementary material

606_2018_1549_MOESM1_ESM.nex (140 kb)
Supplementary material 1 (NEX 140 kb)

References

  1. Abou-El-Enain M (2002) Chromosomal criteria and their phylogenetic implications in the genus Onobrychis Mill. sect. Lophobrychis (Leguminosae), with special reference to Egyptian species. Bot J Linn Soc 139:409–414.  https://doi.org/10.1046/j.1095-8339.2002.00075.x CrossRefGoogle Scholar
  2. Ahangarian S, Kazempour Osaloo S, Maassoumi AA (2007) Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences. Iranian J Bot 13:64–74Google Scholar
  3. Amirabadi-Zadeh H (2011) New records of Hedysareae (Papilionaceae) from Iran. Iranian J Bot 17:63–68.  https://doi.org/10.3906/bot-1309-54 CrossRefGoogle Scholar
  4. Amirabadi-Zadeh H, Ghanavati F (2012) A new species of Onobrychis (Fabaceae) from Iran. Iranian J Bot 18:55–58Google Scholar
  5. Amirabadi-Zadeh H, Abbassi M, Ranjbar M (2007) A new species of Onobrychis sect. Heliobrychis (tribe Hedysareae) from Iran. Iranian J Bot 13:53–56Google Scholar
  6. Amirahmadi A, Kazempour Osaloo Sh, Moein F, Kaveh A, Maassoumi AA (2014) Molecular systematic of the tribe Hedysareae (Fabaceae) based on nrDNA ITS and plastid trnL-F and matK sequences. Pl Syst Evol 300:729–747.  https://doi.org/10.1007/s00606-013-0916-5 CrossRefGoogle Scholar
  7. Amirahmadi A, Kazempour Osaloo Sh, Kaveh A, Maassoumi AA (2016) The phylogeny and new classification of the genus Onobrychis (Fabaceae-Hedysareae): evidence from molecular data. Pl Syst Evol 302:1445–1456.  https://doi.org/10.1007/s00606-016-1343-1 CrossRefGoogle Scholar
  8. Andreasen K, Baldwin BG (2001) Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA internal and external transcribed spacers. Molec Biol Evol 18:936–944.  https://doi.org/10.1093/oxfordjournals.molbev.a003894 CrossRefPubMedGoogle Scholar
  9. Avci S, Sancak C, Can A, Acar A, Pinar NM (2013) Pollen morphology of the genus Onobrychis (Fabaceae) in Turkey. Turk J Bot 37:669–681.  https://doi.org/10.3906/bot-1207-52 CrossRefGoogle Scholar
  10. Avci S, Tekin N, Sancak C, Özcan S, Marangi AO (2016) Phylogenetic relationship of some Onobrychis taxa naturally grown in Turkey based on morphology and nuclear ribosomal DNA. Legume Res 39:665–673Google Scholar
  11. Azani N, Wojciechowski MF, Zarre S (2017) Molecular phylogenetics of annual Astragalus (Fabaceae) and its systematics implications. Bot J Linn Soc 184:347–365.  https://doi.org/10.1093/botlinnean/box032 CrossRefGoogle Scholar
  12. Barrett SCH, Harder LD, Worley A (1996) The comparative biology of pollination and mating. Philos Trans Roy Soc London B 351:1271–1280.  https://doi.org/10.1098/rstb.1996.0110 CrossRefGoogle Scholar
  13. Boissier E (1843) Leguminosae in Diagnoses plantarum Orientalium novarum. Genevae Typographia Ferd. Ramboz 2:6–107CrossRefGoogle Scholar
  14. Bornmüller J (1905) Beiträge zur flora der Elbursgebirge Nord-Persiens. Bull Herb Boissier 5:837–850Google Scholar
  15. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  16. Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Molec Biol Evol 14:733–740.  https://doi.org/10.1093/oxfordjournals.molbev.a025813 CrossRefPubMedGoogle Scholar
  17. Datson PM, Murray BG, Steiner KE (2008) Climate and the evolution of annual/perennial life-histories in Nemesia (Scrophulariaceae). Pl Syst Evol 270:39–57.  https://doi.org/10.1007/s00606-007-0612-4 CrossRefGoogle Scholar
  18. De Tchiratcheff P (1860) Asie Mineur: description physique, statistique et archeologique de cette contree, IIIme Partie, Botanique 1. Gide, ParisGoogle Scholar
  19. Doyle JJ, Doyle JL (1987) A rapid DNA isolation of fresh leaf tissue. Phytochem Bull 19:11–15.  https://doi.org/10.4236/oji.2013.34028 CrossRefGoogle Scholar
  20. Drummond CS, Eastwood RJ, Miotto STS, Hughes CE (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 61:443–460.  https://doi.org/10.1093/sysbio/syr126 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedGoogle Scholar
  22. Evans MEK, Hearn DJ, Hahn WJ, Spangle JM, Venable DL (2005) Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis. Evolution 59:1914–1927.  https://doi.org/10.1111/j.0014-3820 CrossRefPubMedGoogle Scholar
  23. Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319.  https://doi.org/10.1111/j.1096-0031.1994.tb00181.x CrossRefGoogle Scholar
  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 38:783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefGoogle Scholar
  25. Fiz O, Valcárcel V, Vargas P (2002) Phylogenetic position of Mediterranean Astereae and character evolution of daisies (Bellis, Asteraceae) inferred from nrDNA ITS sequences. Molec Phylogen Evol 25:157–171CrossRefGoogle Scholar
  26. Gehrke B, Kandziora M, Pirie MD (2016) The evolution of dwarf shrubs in alpine environments: a case study of Alchemilla in Africa. Ann Bot (Oxford) 117:121–131.  https://doi.org/10.1093/aob/mcv159 CrossRefGoogle Scholar
  27. Ghanavati F, Nematpajooh N (2012) Study of ploidy level of annual species of Onobrychis in Iran. Caryologia 65(4):328–334.  https://doi.org/10.1080/00087114.2012.760880 CrossRefGoogle Scholar
  28. Grossheim AA (1972) Onobrychis Adans. (Leguminosae). In: Komarov VL, Shishkin BK, Bobrov EG (eds) Flora of the USSR, vol. 13. (English translation). Israel Program for Scientific Translations, Jerusalem, pp 244–281Google Scholar
  29. Hatami A, Nasirzadeh AR (2006) Change in rank position of two Onobrychis subspecies according to morphological and karyotypic studies in Fars province. Paj Saz 75:186–191Google Scholar
  30. Hayot Carbonero C, Carbonero F, Smith LMJ, Brown TA (2012) Phylogenetic characterization of Onobrychis species with a special focus on the forage crop Onobrychis viciifolia Scop. Genet Resources Crop Evol 59:1777–1788.  https://doi.org/10.1007/s10722-012-9800-3 CrossRefGoogle Scholar
  31. Heath T, Hedtke S, Hillis D (2008) Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 46:239–257.  https://doi.org/10.3724/SP.J.1002.2008.08016 CrossRefGoogle Scholar
  32. Hedge IC (1970) Onobrychis. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol. 3. University Press, Edinburgh, pp 560–589Google Scholar
  33. Hughes CE, Atchison GW (2015) The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol 207:275–282.  https://doi.org/10.1111/nph.13230 CrossRefPubMedGoogle Scholar
  34. Igea J, Miller EF, Papadopulos AST, Tanentzap AJ (2017) Seed size and its rate of evolution correlate with species diversification across angiosperms. PLoS Biol 15:e2002792.  https://doi.org/10.1371/journal.pbio.2002792 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Karamian R, Moradi Behjou A, Ranjbar M (2009) Pollen morphology of the Onobrychis sect. Heliobrychis in Iran. Taxon Biosyst 1:63–72Google Scholar
  36. Karamian R, Moradi Behjou A, Atri M, Ranjbar M (2010) Infraspecific variation of Onobrychis melanotricha Boiss. (Fabaceae) in relation to its habitats in Hamedan province, Iran. Iranian J Bot 16:10–21Google Scholar
  37. Karamian R, Moradi Behjou A, Ranjbar M (2012) Anatomical findings of Onobrychis sect. Heliobrychis (Fabaceae) in Iran and their taxonomic implications. Turk J Bot 36:27–31Google Scholar
  38. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925.  https://doi.org/10.1080/106351501753462876 CrossRefPubMedGoogle Scholar
  39. Lewke Bandara N, Papini A, Mosti S, Brown T, Smith LMJ (2013) A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae). Turk J Bot 37:981–992CrossRefGoogle Scholar
  40. Lock JM (2005) Tribe Hedysarae. In: Lewis G, Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanical Gardens, Kew, pp 489–495Google Scholar
  41. Mabberley DJ (2008) The plant-book. A portable dictionary of the higher plants, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  42. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available at: http://mesquiteproject.org
  43. Moazzeni H, Zarre S, Pfeil B, Bertrand Y, German D, Al-Shehbaz I, Mummenhoff K, Oxelman B (2014) Phylogenetic perspectives on diversification and character evolution in the species-rich genus Erysimum (Erysimeae; Brassicaceae) based on a densely sampled ITS approach. Bot J Linn Soc 175:497–522.  https://doi.org/10.1111/boj.12184 CrossRefGoogle Scholar
  44. Negaresh K, Karamian R (2015) Onobrychis tabrizensis, nom. nov. (Fabaceae). Ann Bot Fenn 52:192.  https://doi.org/10.5735/085.052.0309 CrossRefGoogle Scholar
  45. Noori M, Dehshiri MM, Sharifi M (2014) Numerical taxonomy of Onobrychis Miller (Hedysareae, Fabaceae) from Markazi Province, Iran using pod, and seed morphological characters. Int J Modern Bot 4:40–47.  https://doi.org/10.5923/j.ijmb.20140402.02 CrossRefGoogle Scholar
  46. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Center, Uppsala University, UppsalaGoogle Scholar
  47. Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583CrossRefGoogle Scholar
  48. Ogburn RM, Edwards EJ (2015) Life history lability underlies rapid climate niche evolution in the angiosperm clade Montiaceae. Molec Phylogen Evol 92:181–192.  https://doi.org/10.1016/j.ympev.2015.06.006 CrossRefGoogle Scholar
  49. Page DM (2001) Treeview (Win32) version 1.6.6. Available at: http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
  50. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808.  https://doi.org/10.1080/10635150490522304 CrossRefPubMedGoogle Scholar
  51. QGIS Development Team (2018) QGIS geographic information system. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org
  52. Rambaut A, Drummond AJ (2007) Tracer, version 1.4. Computer program and documentation distributed by the author. Available at: http://tree.bio.ed.ac.uk/software/tracer/
  53. Ranjbar M, Amirabadi-Zadeh H, Karamian R, Ghahremani MA (2004) Notes on Onobrychis sect. Heliobrychis (Fabaceae) in Iran. Willdenowia 34:187–190. http://www.jstor.org/stable/3997472
  54. Ranjbar M, Karamian R, Afsari S (2010) Meiotic chromosome number and behaviour of Onobrychis avajensis (Fabaceae): a new species from western Iran. Pl Eco Evol 143:1–6.  https://doi.org/10.5091/plecevo.2010.431 CrossRefGoogle Scholar
  55. Rechinger KH (1940) Plantae novae iranicae. I. Feddes Repert 48:44.  https://doi.org/10.1002/fedr.4870482102 CrossRefGoogle Scholar
  56. Rechinger KH (1984) Tribus Hedysareae. Nr. 157. In: Rechinger KH (ed) Papilionaceae II, Flora Iranica. Akademische Druckund Verlagsanstalt, Graz, pp 387–464Google Scholar
  57. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Safaei-Chaeikar S, Ghanavati F, Mozafari J, Naghavi MR, Amirabadi-Zadeh H, Darvish F (2012) Phylogenetic relationships of Onobrychis Mill. (Fabaceae: Papilionoideae) based on ITS sequences of nuclear ribosomal DNA and morphological traits. Crop Breed J 2:91–99Google Scholar
  59. Safaei-Chaeikar S, Ghanavati F, Mozafari J, Naghavi MR, Darvish F (2013) Morphological characterization of Onobrychis sect. Heliobrychis (Fabaceae) in Iran. Ann Biol Res 4:105–108Google Scholar
  60. Safaei-Chaeikar S, Ghanavati F, Naghavi MR, Amirabadi-zade H, Rabiee R (2014) Molecular phylogenetics of the Onobrychis genus (Fabaceae: Papilionoideae) using ITS and trnL–trnF DNA sequence data. Austral J Bot 62:235–250.  https://doi.org/10.1071/BT13279 CrossRefGoogle Scholar
  61. Sang T, Crawford DJ, Stuessy T (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implication for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817CrossRefGoogle Scholar
  62. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in Angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288.  https://doi.org/10.3732/ajb.94.3.275 CrossRefGoogle Scholar
  63. Silvestro D, Michalak I (2012) RaxmlGUI: a graphical front-end for RAxML. Organisms Diversity Evol 12:335–337.  https://doi.org/10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  64. Širjaev G (1926) Onobrychis generis revisio critica. Pars prima. Spisy Prír Fak Masarykovy Univ 76:1–165Google Scholar
  65. Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland. Available at:  https://doi.org/10.1111/j.0014-3820.2002.tb00191.x CrossRefGoogle Scholar
  66. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal Primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109.  https://doi.org/10.1007/BF00037152 CrossRefGoogle Scholar
  67. Takebayashi N, Morrell PL (2001) Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Amer J Bot 88:1143–1150.  https://doi.org/10.2307/3558325 CrossRefGoogle Scholar
  68. Thiers B (2012) Index herbariorum: a global directory of public herbaria and associated staff. Available at: http://sciweb.nybg.org/science2/IndexHerbariorum.asp
  69. Townsend CC (1974) Onobrychis in Flora of Iraq, vol. 3. Ministry of Agriculture of the Republic of Iraq, Baghdad, pp 471–493Google Scholar
  70. Wang J, Pan B, Albach DC (2016) Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae). PeerJ 4:e2333.  https://doi.org/10.7717/peerj.2333 CrossRefPubMedPubMedCentralGoogle Scholar
  71. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis DH (ed) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  72. Willis CG, Hall JC, Rubio de Casas R, Wang TY, Donohue K (2014) Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae). Ann Bot (Oxford) 114:1675–1686.  https://doi.org/10.1093/aob/mcu196 CrossRefGoogle Scholar
  73. Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization. Proc Roy Soc B 280:20130133.  https://doi.org/10.1098/rspb.2013.0133 CrossRefGoogle Scholar
  74. Yaqoob U, Nawchoo IA (2017) Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke. J King Saud Univ Sci 29:19–27.  https://doi.org/10.1016/j.jksus.2015.10.002 CrossRefGoogle Scholar
  75. Yildiz B, Ciplak B, Aktoklu E (1999) Fruit morphology of sections of the genus Onobrychis Miller (Fabaceae) and its phylogenetic implications. Israel J Pl Sci 47:269–282.  https://doi.org/10.1080/07929978.1999.10676784 CrossRefGoogle Scholar
  76. Zwickl D, Hillis D (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598.  https://doi.org/10.1080/10635150290102339 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Biology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  2. 2.School of Biology and Institute of Biological SciencesDamghan UniversityDamghanIran
  3. 3.Department of BotanyResearch Institute of Forests and RangelandsTehranIran
  4. 4.Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria

Personalised recommendations