Advertisement

Novel reports of laticifers in Moraceae and Urticaceae: revisiting synapomorphies

  • Cristina R. Marinho
  • Simone P. Teixeira
Original Article
  • 47 Downloads

Abstract

In this study, we reassessed the morphology and distribution of laticifers present in the inflorescences of nine Moraceae and three Urticaceae species and compared the substances found in their latices. Reproductive meristems and inflorescences at different developmental stages were collected, fixed and processed for light microscopy analysis. In Moraceae, laticifers occur in almost all inflorescence organs. In Urticaceae, the presence of laticifers in the inflorescence axis and sepals is a novelty, since the family is characterized by having laticifers only in the bark. The laticifers of Moraceae and Urticaceae show a thin pectocellulosic cell wall and are articulated and branched, although they are currently classified as non-articulated branched in Moraceae and non-articulated unbranched in Urticaceae. The latex contains proteins and alkaloids. Lipids are common in Moraceae latex, whereas phenolic compounds occur in the Urticaceae latex. Polysaccharides occur in the majority of the species studied, an unprecedented finding for the group. Thus, we found that the non-articulated type of laticifer may not consist of a synapomorphy for Moraceae and Urticaceae. Moreover, the laticifer branching in the inflorescences of Urticaceae indicates that its distribution and ramification as acknowledged in the literature (restricted to the bark and unbranched) should be reevaluated and may not constitute synapomorphies for this family either. The adaptive value of laticifers for Moraceae and Urticaceae is high, since they occur widely in the plant body of their representatives. The presence of proteins and alkaloids in the latex and the absence of starch grains are probably conserved traits in the urticinean rosids.

Keywords

Development Flower Inflorescence Latex Plant anatomy Secretory structures 

Notes

Acknowledgements

The authors thank Edimárcio S. Campos and Giseli D. Pedersoli for technical assistance, André L. Gaglioti and Aline R. S. Gualberto for providing images of inflorescences, Bruno Favaretto for the schematic drawings, Diego Demarco for helping us to understand the laticifer articulation, and Elettra Greene for the English revision. This study was supported by São Paulo Research Foundation, Fapesp (Grant Nos. 2013/21794-5 and 2014/07453-3) and National Council for Scientific and Technological Development, Cnpq (Grant No. 303493/2015-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annual Rev Ecol Evol Syst 40:311–331.  https://doi.org/10.1146/annurev.ecolsys.110308.120307 CrossRefGoogle Scholar
  2. Amorin A, Borba HR, Carauta JPP, Lopes D, Kaplan MAC (1999) Anthelmintic activity of the latex of Ficus species. J Ethnopharmacol 64:255–258.  https://doi.org/10.1016/S0378-8741(98)00139-1 CrossRefPubMedGoogle Scholar
  3. Araújo ND, Coelho VPM, Ventrella MC, Agra MF (2014) Leaf anatomy and histochemistry of three species of Ficus sect. Americanae supported by light and electron microscopy. Microscop Microanal 20:296–304.  https://doi.org/10.1017/S1431927613013743 CrossRefGoogle Scholar
  4. Ascensão L (2007) Estruturas secretoras em plantas. Uma abordagem morfo-anatómica. In: Figueiredo AC, Barroso JG, Pedro LG (eds) Potencialidades e aplicações das plantas aromáticas e medicinais – Curso teórico-prático, 3ª edn. Faculdade da Universidade de Lisboa – Centro de Biotecnologia Vegetal, Lisboa, pp 19–28Google Scholar
  5. Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH (1985) Reproductive biology of tropical lowland rain forest trees. II. Pollination systems. Amer J Bot 72:346–356.  https://doi.org/10.1002/j.1537-2197.1985.tb05358.x CrossRefGoogle Scholar
  6. Berg CC (1978) Cecropiaceae, a new family of the Urticales. Taxon 27:39–44.  https://doi.org/10.2307/1220477 CrossRefGoogle Scholar
  7. Berg CC (1990) Differentiation of flowers and inflorescences of Urticales in relation to their protection against breeding insects and to pollination. Sommerfeltia 11:13–34Google Scholar
  8. Berg CC (2001) Moreae, Artocarpeae, and Dorstenia (Moraceae): with introductions to the family and Ficus and with additions and corrections to Flora Neotropica Monograph 7 (Flora Neotropica monograph 83). The New York Botanical Garden, New YorkGoogle Scholar
  9. Brantjes NBM (1981) Nectar and pollination of bread fruit, Artocarpus altilis (Moraceae). Acta Bot Neerl 30:345–352.  https://doi.org/10.1111/j.1438-8677.1981.tb01264.x CrossRefGoogle Scholar
  10. Canaveze Y, Machado SR (2016) The occurrence of intrusive growth associated with articulated laticifers in Tabernaemontana catharinensis A. DC., a new record for Apocynaceae. Int J Pl Sci 177:458–467.  https://doi.org/10.1086/685446 CrossRefGoogle Scholar
  11. Castelblanque L, Balaguer B, Marti C, Rodríguez JJ, Orozco M, Vera P (2016) Novel insights into the organization of laticifer cells: a cell comprising a unified whole system. Pl Physiol 172:1032–1044.  https://doi.org/10.1104/pp.16.00954 CrossRefGoogle Scholar
  12. Castelblanque L, Balaguer B, Martí C, Rodríguez JJ, Orozco M, Vera P (2017) Multiple facets of laticifer cells. Plant Signal Behav 12:e1300743.  https://doi.org/10.1080/15592324.2017.1300743 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castelblanque L, Balaguer B, Martí C, Orozco M, Vera P (2018) LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris. New Phytol 219:1467–1479.  https://doi.org/10.1111/nph.15253 CrossRefPubMedGoogle Scholar
  14. Castro MM, Machado SR (2012) Células e tecidos secretores. In: Appezzato-da-Glória B, Carmello-Guerreiro SM (eds) Anatomia Vegetal, 3rd edn. Editora UFV, Viçosa, pp 169–191Google Scholar
  15. Clement WL, Weiblen GD (2009) Morphological evolution in the mulberry family (Moraceae). Syst Bot 34:530–552.  https://doi.org/10.1600/036364409789271155 CrossRefGoogle Scholar
  16. Conn BJ, Hadiah JT (2009) Nomenclature of tribes within the Urticaceae. Kew Bull 64:349–352.  https://doi.org/10.1007/s12225-009-9108-4 CrossRefGoogle Scholar
  17. Costa MFB (2015) Morfologia do estigma de Ficus L. (Moraceae) e suas implicações no mutualismo figo-vespa de figo. Ph.D. Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  18. Datwyler SL, Weiblen GD (2004) On the origin of the fig: phylogenetic relationships of Moraceae from ndhF sequences. Amer J Bot 91:767–777.  https://doi.org/10.3732/ajb.91.5.767 CrossRefGoogle Scholar
  19. David R, Carde JP (1964) Coloration différentielle des inclusions lipidiques et terpeniques des pseudophylles du pin maritime au moyen du reactif Nadi. Compt Rend Hebd Séances Acad Sci D 258:1338–1340Google Scholar
  20. Demarco D, Castro MM (2008) Laticíferos articulados anastomosados em espécies de Asclepiadeae (Asclepiadoideae, Apocynaceae) e suas implicações ecológicas. Revista Brasil Bot 31:701–713.  https://doi.org/10.1590/S0100-84042008000400015 CrossRefGoogle Scholar
  21. Demarco D, Kinoshita LS, Castro MM (2006) Laticíferos articulados anastomosados: novos registros para Apocynaceae. Revista Brasil Bot 29:133–144.  https://doi.org/10.1590/S0100-84042006000100012 CrossRefGoogle Scholar
  22. Duarte MR, Gomes JB, Santos RH, Yano M (2012) Caracteres microscópicos de folha de Maclura tinctoria (L.) D. Don ex Steud., Moraceae. Visão Acad Curitiba 13:4–15Google Scholar
  23. Engler HGA (1889) Moraceae. In: Engler HGA, Prantl K (eds) Die Natürlichen Pflanzenfamilien, vol. 3(1). Wilhelm Engelmann, Leipzig, pp 66–98Google Scholar
  24. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  25. Fahn A (1979) Secretory tissues in plants. Academic Press, LondonGoogle Scholar
  26. Farrel BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: do latex/resin canals spur plant diversification? Amer Naturalist 138:881–900.  https://doi.org/10.1086/285258 CrossRefGoogle Scholar
  27. Fisher DB (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16:92–96.  https://doi.org/10.1007/BF00306214 CrossRefPubMedGoogle Scholar
  28. French JC (1988) Systematic occurrence of anastomosing laticifers in Araceae. Bot Gaz 149:71–81.  https://doi.org/10.1086/337693 CrossRefGoogle Scholar
  29. Furr M, Mahlberg PG (1981) Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44:153–159.  https://doi.org/10.1021/np50014a002 CrossRefGoogle Scholar
  30. Guérin P (1923) Les Urticées: cellules à mucilage, laticifères et canaux sécréteurs. Bull Soc Bot France 70:255–263.  https://doi.org/10.1080/00378941.1923.10836825 CrossRefGoogle Scholar
  31. Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Pl Sci 13:631–639.  https://doi.org/10.1016/j.tplants.2008.09.005 CrossRefGoogle Scholar
  32. Hilje B, Calvo-Alvarado J, Jiménez-Rodríguez C, Sánchez-Azofeifa A (2015) Tree species composition, breeding systems, and pollination and dispersal syndromes in three forest successional stages in a tropical dry forest in Mesoamerica. Trop Conserv Sci 8:76–94.  https://doi.org/10.1177/194008291500800109 CrossRefGoogle Scholar
  33. Huber M, Epping J, Gronover CS, Fricke J, Aziz Z, Brillatz T, Swyers M, Koellner TG, Vogel H, Hammerbacher A et al (2016) A latex metabolite benefits plant fitness under root herbivore attack. PLoS Biol 14:e1002332.  https://doi.org/10.1371/journal.pbio.1002332 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hughes J, McCully ME (1975) The use of an optical brightener in the study of plant structure. Stain Technol 50:1037–1041.  https://doi.org/10.3109/10520297509117082 CrossRefGoogle Scholar
  35. Jacomassi E, Moscheta IS, Machado SR (2010) Morfoanatomia e histoquímica de órgãos reprodutivos de Brosimum gaudichaudii (Moraceae). Revista Brasil Bot 33:115–129.  https://doi.org/10.1590/S0100-84042010000100011 CrossRefGoogle Scholar
  36. Jensen WA (1962) Botanical histochemistry: principles and practice. W.H. Freeman and Co, San FranciscoGoogle Scholar
  37. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co. Inc, New YorkGoogle Scholar
  38. Judd WS, Campbell CS, Kellogg EA, Stevens PF (2009) Sistemática Vegetal, um enfoque filogenético, 3rd edn. Artmed, Porto AlegreGoogle Scholar
  39. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of light osmolarity for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  40. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530.  https://doi.org/10.1016/j.phytochem.2011.02.016 CrossRefPubMedGoogle Scholar
  41. Lillie RD (1965) Histopathologic technic and practical histochemistry, 3rd edn. McGraw-Hill Book Company, New YorkGoogle Scholar
  42. Lopes KLB, Thadeo M, Azevedo AA, Soares AA, Meira RMSA (2009) Articulated laticifers in the vegetative organs of Mandevilla atroviolacea (Apocynaceae, Apocynoideae). Botany 87:202–209.  https://doi.org/10.1139/B08-126 CrossRefGoogle Scholar
  43. Mahlberg PG (1993) Laticifers: an historical perspective. Bot Rev 59:1–23.  https://doi.org/10.1007/BF02856611 CrossRefGoogle Scholar
  44. Marinho CR, Pereira RAS, Peng Y-Q, Teixeira SP (2018) Laticifer distribution in fig inflorescence and its potential role in the fig–fig wasp mutualism. Acta Oecol 90:160–167.  https://doi.org/10.1016/j.actao.2017.10.005 CrossRefGoogle Scholar
  45. Mesquita JF, Dias JDS (1984) Ultrastructural and cytochemical study of the laticifers of Cannabis sativa L. Bol Soc Brot 57:337–356Google Scholar
  46. Metcalfe CR (1983) Laticifers and latex. In: Metcalfe CR, Chalk L (eds) Anatomy of the Dicotyledons: wood structure and conclusion of the general introduction, vol. 2. Clarendon Press, Oxford, pp 70–81Google Scholar
  47. Metcalfe CR, Chalk L (1950) Anatomy of the Dicotyledons: leaves, stem and wood in relation to taxonomy with notes on economic uses, vol. 2. Clarendon Press, OxfordGoogle Scholar
  48. Milanez FR (1954) Sobre os laticíferos foliares de Ficus retusa. Rodriguésia 28–29:159–192. www.jstor.org/stable/23491850
  49. Momose K, Hatada A, Yamaoka R, Inoue T (1998) Pollination biology of the genus Artocarpus, Moraceae. Tropics 7:165–172.  https://doi.org/10.3759/tropics.7.165 CrossRefGoogle Scholar
  50. Moncur MW (1985) Floral ontogeny of the Jackfruit, Artocarpus heterophyllus Lam. (Moraceae). Austral J Bot 33:585–593.  https://doi.org/10.1071/BT9850585 CrossRefGoogle Scholar
  51. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:367–373.  https://doi.org/10.1007/BF01248568 CrossRefGoogle Scholar
  52. Oyama SO, Souza LA (2011) Morphology and anatomy of the developing fruit of Maclura tinctoria, Moraceae. Revista Brasil Bot 34:187–195.  https://doi.org/10.1590/S0100-84042011000200006 CrossRefGoogle Scholar
  53. Pearse AGE (1985) Histochemistry: theoretical and applied, 4th edn. C. Livingstone, EdinburghGoogle Scholar
  54. Quintanar A, Castrejón JLZ (2004) Anatomía e histoquímica de la corteza de cinco espécies de Moraceae. Polibotánica 17:15–38Google Scholar
  55. Rachmilevitz T, Fahn A (1982) Ultrastructure and development of the laticifers of Ficus carica L. Ann Bot (Oxford) 49:13–22.  https://doi.org/10.1093/oxfordjournals.aob.a086223 CrossRefGoogle Scholar
  56. Ramadan MA, Ahmad AS, Nafady AM, Mansour AI (2008) Macro and micromorphology studies of the leaf, stem and stem bark of Ficus pandurata Hance. cultivated in Egypt. Bull Pharm Sci Assiut University 31:1–28Google Scholar
  57. Robbins BH (1930) A proteolytic enzyme in ficin, the anthelmintic principle of leche de higueron. J Biol Chem 87:251–257Google Scholar
  58. Rohwer JG (1993) Moraceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants: flowering plants: Dicotyledons (Magnoliid, Hamamelid and Caryophyllid Families), vol. 2. Springer, Berlin, pp 438–453Google Scholar
  59. Romaniuc-Neto S (1999) Cecropioideae (C.C. Berg) Romaniuc-Neto stat. nov. (Moraceae-Urticales). Albertoa 4:13–16Google Scholar
  60. Sacchetti G, Ballero M, Serafini M, Romagnoli C, Bruni A, Poli F (1999) Laticifer tissue distribution and alkaloid location in Vinca sardoa (Stearn) Pign. (Apocynaceae), an endemic plant of Sardinia (Italy). Phyton 39:265–275Google Scholar
  61. Sakai S (2001) Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. Amer J Bot 88:1527–1534.  https://doi.org/10.2307/3558396 CrossRefGoogle Scholar
  62. Sakai S, Kato M, Nagamasu H (2000) Artocarpus (Moraceae): gall midge pollination mutualism mediated by a male-flower parasitic fungus. Amer J Bot 87:440–445.  https://doi.org/10.2307/2656640 CrossRefPubMedGoogle Scholar
  63. Scott JE (1970) Histochemistry of Alcian blue I: metachromasia of Alcian blue, astrablau and other cationic phthalocyanin dyes. Histochemie 21:129–133.  https://doi.org/10.1007/BF00304219 CrossRefGoogle Scholar
  64. Smith JL, Perino JV (1981) Osage orange (Maclura pomifera): history and economic uses. Econ Bot 35:24–41.  https://doi.org/10.1007/BF02859211 CrossRefGoogle Scholar
  65. Smith FH, Smith EC (1942) Anatomy of the inferior ovary of Darbya. Amer J Bot 29:464–471.  https://doi.org/10.1002/j.1537-2197.1942.tb10236.x CrossRefGoogle Scholar
  66. Souza LA, Rosa SM (2005) Morfo-anatomia do fruto em desenvolvimento de Sorocea bonplandii (Baill.) Burger, Lanjow and Boer (Moraceae). Acta Sci Biol Sci 27:423–428.  https://doi.org/10.4025/actascibiolsci.v27i4.1332 CrossRefGoogle Scholar
  67. Souza CD, Pereira RAS, Marinho CR, Kjellberg F, Teixeira SP (2015) Diversity of fig glands is associated with nursery mutualism in fig trees. Amer J Bot 102:1–14.  https://doi.org/10.3732/ajb.1500279 CrossRefGoogle Scholar
  68. Stevens PF (2001 onwards) Angiosperm phylogeny website, version 14, July 2017 (and more or less continuously updated since). Available at: http://www.mobot.org/MOBOT/research/APweb/. Accessed 9 Oct 2017
  69. Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E, Zjhra M, Hall JC, Chase MW (2002) Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Amer J Bot 89:1531–1546.  https://doi.org/10.3732/ajb.89.9.1531 CrossRefGoogle Scholar
  70. The Plant List (2013) Version 1.1. Published on the Internet. Available at: http://www.theplantlist.org/. Accessed 01 Oct 2017
  71. Topper SMC, Koek-Noorman J (1980) The occurrence of axial latex tubes in the secondary xylem of some species of Artocarpus J. R. and G. Forster (Moraceae). IAWA Bull 1:113–119.  https://doi.org/10.1163/22941932-90000703 CrossRefGoogle Scholar
  72. van Veenendaal WLH, den Outer RW (1990) Distribution and development of the non-articulated branched laticifers of Morus nigra L. (Moraceae). Acta Bot Neerl 39:285–296.  https://doi.org/10.1111/j.1438-8677.1990.tb01398.x CrossRefGoogle Scholar
  73. Vidal BC (1970) Dichroism in collagen bundles stained with Xylidine-Ponceau 2R. Ann Histochim 15:289–296Google Scholar
  74. Williams G, Adam P (1994) A review of rainforest pollination and plant-pollinator interactions with particular reference to Australian subtropical rainforests. Austral Zool 29:177–212.  https://doi.org/10.7882/AZ.1994.006 CrossRefGoogle Scholar
  75. Williams GA, Adam P, Mound LA (2001) Thrips (Thysanoptera) pollination in Australian subtropical rainforests, with particular reference to pollination of Wilkiea huegeliana (Monimiaceae). J Nat Hist 35:1–21.  https://doi.org/10.1080/002229301447853 CrossRefGoogle Scholar
  76. Wu ZY, Monro AK, Milne RI, Wang H, Yi TS, Liu J, Li DZ (2013) Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Molec Phylogen Evol 69:814–827.  https://doi.org/10.1016/j.ympev.2013.06.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations