Advertisement

Plant Systematics and Evolution

, Volume 304, Issue 8, pp 1023–1040 | Cite as

Phylogenetic and morphological analysis of a new cliff-dwelling species reveals a remnant ancestral diversity and evolutionary parallelism in Sonchus (Asteraceae)

  • José A. Mejías
  • Mathieu Chambouleyron
  • Seon-Hee Kim
  • M. Dolores Infante
  • Seung-Chul Kim
  • Jean-François Léger
Original Article

Abstract

We describe a new cliff-dwelling species within Sonchus (Asteraceae): Sonchus boulosii and analyze its systematic position and evolutionary significance; in addition, we provide a key to the species of Sonchus in Morocco. Both morphological and ecological characteristics suggest a close relationship of S. boulosii with taxa of section Pustulati. However, ITS nrDNA and cpDNA matK markers indicate its uncertain position within the genus, but clear genetic differentiation from the remaining major clades. ITS phylogenetic trees show that likely evolutionary shifts to rocky habitat took place at least five times within genus Sonchus and that sect. Pustulati and S. boulosii clades have a clearly independent evolutionary origin. We postulate that the strong resemblance of S. boulosii to other rocky species reflects a phenomenon of homoplasy, probably driven by parallel evolutionary adaptations to the severe ecological constraints of its cliff face habitat. Therefore, a new section is also described, which includes S. boulosii as its sole representative: section Pulvinati. According to phylogenetic trees, the new clade may share its common ancestor with the clade comprising sections Maritimi and Arvenses, from which it is widely divergent in morphology and ecology, with the exception of Sonchus novae-zelandiae. However, the latter is a derived taxon, with high level of polyploidy unlike S. boulosii that shows 2n = 18, basal chromosome number of the genus. Since sections Pulvinati and Pustulati seem to be quite old in Sonchus, we also hypothesize that some similarities, such as fruit morphology, may reflect the persistence of some primitive characteristics.

Keywords

Homoplasy Karyogram matK cpDNA nrDNA ITS Parallel evolution Western Mediterranean 

Notes

Acknowledgements

We are grateful to H.H. Sheikh Mohamed bin Zayed Al Nahayan, Crown Prince of Abu Dhabi and Chairman of the International Fund for Houbara Conservation (IFHC), and H.E. Mohamed Al Bowardi, Deputy Chairman of the IFHC, for having provided the main financial support that enabled the collection of data used in this document. We appreciate the help of Herbarium SEV for preserving dry material and the General Greenhouse Service of the University of Seville for the help in plant cultivation. We also thank Dr. Thomas Martin (Reneco International Wildlife Consultants LLC) for reviewing this text, Grégoire Liénart (ECWP) for preparing the map, and the botanical illustrator Rodrigo Tavera for his detailed drawing included as the icon.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

Supplementary material

606_2018_1523_MOESM1_ESM.pdf (153 kb)
Online Resource 1. Collections of Sonchus boulosii for this study. (PDF 153 kb)
606_2018_1523_MOESM2_ESM.txt (85 kb)
Online Resource 2. Sequence Alignment of ITS region for the Sonchinae. (TXT 85 kb)
606_2018_1523_MOESM3_ESM.txt (121 kb)
Online Resource 3. Sequence Alignment of matk region for the Sonchinae. (TXT 120 kb)

References

  1. Allan HHB, Moore LB, Edgar E (1961) Flora of New Zealand, vol 1. PD Hasselberg Government Printer, WellingtonGoogle Scholar
  2. Arendt J, Reznick D (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23:26–32.  https://doi.org/10.1016/j.tree.2007.09.011 CrossRefPubMedGoogle Scholar
  3. Bailey SF, Rodrigue N, Kassen R (2015) The effect of selection environment on the probability of parallel evolution. Molec Biol Evol 32:1436–1448.  https://doi.org/10.1093/molbev/msv033 CrossRefPubMedGoogle Scholar
  4. Barnosky A, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57.  https://doi.org/10.1038/nature09678 CrossRefPubMedGoogle Scholar
  5. Beuzenberg EJ, Hair JB (1984) Contributions to a chromosome atlas of the New Zealand flora—27. Compositae. New Zealand J Bot 22:353–356CrossRefGoogle Scholar
  6. Boulos L (1972) Révision systématique du genre Sonchus s.l. I. Introduction et classification. Bot Not 125:287–305Google Scholar
  7. Boulos L (1973) Révision systématique du genre Sonchus s.l. IV. Sous-genre 1. Sonchus. Bot Not 126:155–196Google Scholar
  8. Boulos L (1974a) Révision systématique du genre Sonchus s.l. V. Sous-genre 2. Dendrosonchus. Bot Not 127:7–37Google Scholar
  9. Boulos L (1974b) Révision systématique du genre Sonchus s.l. VI. Sous-genre 3. Origosonchus. Genres Embergeria, Babcockia et Taeckholmia. Species exclusae et dubiae. Index. Bot Not 127:402–451Google Scholar
  10. Bragazza L (2009) Conservation priority of Italian Alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers & Conservation 11:2823–2835CrossRefGoogle Scholar
  11. Carlquist S (1966) The biota of long-distance dispersal. II. Loss of dispersibility in Pacific Compositae. Evolution 20:30–48CrossRefPubMedGoogle Scholar
  12. Carlquist S (1967) Anatomy and systematics of Dendroseris (sensu lato). Brittonia 19:99–121CrossRefGoogle Scholar
  13. Chalouan A, Michard A, El Kadiri K, Negro F, Frizon de Lamotte D, Soto JI, Saddiqi O (2008) The Rif belt. In: Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D (eds) Continental evolution: the geology of Morocco. Springer, Berlin, pp 203–302CrossRefGoogle Scholar
  14. Chambouleyron M, Bidat M, Léger J-F (2014) Centaurea ibn-tattoui (Asteraceae), a new narrow endemic species from North-Eastern Morocco. Phytotaxa 174:157–164.  https://doi.org/10.11646/phytotaxa.174.3.4 CrossRefGoogle Scholar
  15. Chambouleyron M, Bidat M, Ibn-Tattou M, Molero J, Montserrat J-M, Pyke S, Léger J-F (2015a) Contribution à la connaissance de la flore vasculaire du Maroc oriental: plaine de Lamrija et revers nord des monts de Debdou. Bull Inst Sci Rabat 37:1–16Google Scholar
  16. Chambouleyron M, Bidat M, Léger J-F (2015b) Sarcocapnos crassifolia subsp. simplicifolia (Papaveraceae, Fumarioideae), a new narrow-endemic taxon from Northeastern Morocco. Ann Bot Fenn 52:205–210CrossRefGoogle Scholar
  17. Crisp MD, Cook L-G (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196:681–694.  https://doi.org/10.1111/j.1469-8137.2012.04298.x CrossRefPubMedGoogle Scholar
  18. Dobignard A (2002) Contributions à la connaissance de la flore du Maroc et de l’Afrique du Nord. Nouvelle série. 1. J Bot 20:5–43Google Scholar
  19. Dobignard A, Chatelain C (2011) Index synonymique de la flore d’Afrique du Nord. Dicotyledoneae: Acanthaceae à Asteraceae, vol 2. Conservatoire et Jardin Botaniques Ville de Genève, ECWP, GenèveGoogle Scholar
  20. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  21. Fennane M, Ibn Tattou M (1998) Catalogue des plantes vasculaires rares, menacées ou endémiques du Maroc. Bocconea 8:5–243Google Scholar
  22. Fennane M, Ibn Tattou M (2005) Flore vasculaire du Maroc, inventaire et chorologie, Pteridophyta, Gymnospermae, Angiospermae p.p., 1. Travaux de l’Institut Scientifique, Série Botanique, no 37, RabatGoogle Scholar
  23. Fennane M, Ibn Tattou M, El Oualidi J (eds) (2014) Flore Pratique du Maroc, vol. 3. Travaux de l’Institut Scientifique, Série Botanique, no 40, RabatGoogle Scholar
  24. Frizon de Lamotte D, Zizi M, Missenard Y, Hafid M, El Azzouzi M, Maury RC, Charrière A, Taki Z, Benammi M, Michard A (2008) The atlas system. In: Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D (eds) Continental evolution: the geology of Morocco. Springer, Berlin, pp 133–202CrossRefGoogle Scholar
  25. García MB, Guzmán D, Goñi D (2002) An evaluation of the status of five threatened plant species in the Pyrenees. Biol Conservation 103:151–161CrossRefGoogle Scholar
  26. Guo X, Wang RJ, Simmons MP, But PPH, Yu J (2013) Phylogeny of the Asian Hedyotis-Oldenlandia complex (Spermacoceae, Rubiaceae): evidence for high levels of polyphyly and the parallel evolution of diplophragmous capsules. Molec Phylogen Evol 67:110–122.  https://doi.org/10.1016/j.ympev.2013.01.006 CrossRefGoogle Scholar
  27. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.  https://doi.org/10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  28. IUCN Standards and Petitions Subcommittee (2017) Guidelines for using the IUCN red list categories and criteria. Version 13. Prepared by the standards and petitions subcommittee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf
  29. Johow F (1896) Estudios sobre la flora de las Islas de Juan Fernández. Imprenta Cervantes, Santiago de ChileCrossRefGoogle Scholar
  30. Kim S-C, Lee C, Mejías JA (2007) Phylogenetic analysis of chloroplast DNA matK gene and ITS of nrDNA sequences reveals polyphyly of the genus Sonchus and new relationships among the subtribe Sonchinae (Asteraceae: Cichorieae). Molec Phylogen Evol 44:578–597.  https://doi.org/10.1016/j.ympev.2007.03.014 CrossRefGoogle Scholar
  31. Kim S-C, Mejías JA, Pesach L (2008) Molecular confirmation of the hybrid origin of the critically endangered western Mediterranean endemic Sonchus pustulatus (Asteraceae: Sonchinae). J Pl Res 121:357–364.  https://doi.org/10.1007/s10265-008-0166-8 CrossRefGoogle Scholar
  32. Kimura M (1980) Simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Molec Evol 16:111–120CrossRefPubMedGoogle Scholar
  33. Küpfer P (1974) Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissiera 23:322Google Scholar
  34. Larson DW, Matthes U, Kelly PE (2005) Cliff ecology: pattern and process in cliff ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  35. Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518CrossRefGoogle Scholar
  36. Lee C, Kim S-C, Lundy K, Santos-Guerra A (2005) Chloroplast DNA phylogeny of the woody Sonchus alliance (Asteraceae: Sonchinae) in the Macaronesian Islands. Amer J Bot 92:2072–2085.  https://doi.org/10.3732/ajb.92.12.2072 CrossRefGoogle Scholar
  37. Levan A, Fredga K, Sandberg A (1964) Nomenclature for centromeric position on chromosomes. Hereditas (Lund) 52:201–220CrossRefGoogle Scholar
  38. Lin TT, Klinkhamer PGL, Vrieling K (2015) Parallel evolution in an invasive plant: effect of herbivores on competitive ability and regrowth of Jacobaea vulgaris. Ecol Lett 18:668–676.  https://doi.org/10.1111/ele.12445 CrossRefPubMedGoogle Scholar
  39. Lindberg H (1932) Itinera Mediterranea. Acta Soc Sci Fenn, Ser B, Opera Biol 1(2):1–178Google Scholar
  40. Löve Á, Löve D (1975) Plant chromosomes. J Cramer, VaduzGoogle Scholar
  41. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Missouri Bot Gard 84:112–127CrossRefGoogle Scholar
  42. Mejías JA (1988) Diferencias cariológicas y morfológicas entre Sonchus pustulatus Willk. y Sonchus tenerrimus L. Lagascalia 15(Extra):345–354Google Scholar
  43. Mejías JA (2017) Sonchus. In: Talavera S, Buira A, Quintanar A, García MA, Talavera M, Fernández-Piedra P, Aedo C (eds) Flora iberica 16(2). Real Jardín Botánico; CSIC, Madrid, pp 871–891Google Scholar
  44. Mejías JA, Andrés C (2004) Karyological studies in Iberian Sonchus (Asteraceae: Lactuceae): S. oleraceus, S. microcephalus and S. asper and a general discussion. Folia Geobot 39:275–291CrossRefGoogle Scholar
  45. Mejías JA, Valdés B (1988) Karyological studies in Sonchus section Maritimi (Asteraceae) from the Iberian Peninsula. Bot J Linn Soc 98:61–69CrossRefGoogle Scholar
  46. Michard A, Hoepffner C, Soulaimani A, Baidder L (2008) The Variscan belt. In: Michard A, Saddiqi O, Chalouan A, Frizon de Lamotte D (eds) Continental evolution: the geology of Morocco. Springer, Berlin, pp 65–132CrossRefGoogle Scholar
  47. Moen DS, Irschick DJ, Wiens JJ (2013) Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc Roy Soc London, Ser B, Biol Sci 280:20132156.  https://doi.org/10.1098/rspb.2013.2156 CrossRefGoogle Scholar
  48. Mokhtari N, Mrabet R, Lebailly P, Bock L (2014) Spatialisation des bioclimats, de l’aridité et des étages de végétation du Maroc. Rev Mar Sci Agron Vét 2:50–66Google Scholar
  49. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean. PLoS Biol 9:e1001127.  https://doi.org/10.1371/journal.pbio.1001127 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  51. Nylander JAA (2004) MrModeltest 22 Computer program and documentation distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  52. Pearce T (2012) Convergence and parallelism in evolution: a neo-Gouldian account. Brit J Philos Sci 63:429–448.  https://doi.org/10.1093/bjps/axr046 CrossRefGoogle Scholar
  53. Pérez-García FJ, Medina-Cazorla JM, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Salmerón-Sánchez E, Mota JF (2012) Iberian Baetic endemic flora and the implications for a conservation policy. Ann Bot Fenn 49:43–54CrossRefGoogle Scholar
  54. Plata ER, Hernández JE, Lucking R, Staiger B, Kalb K, Cáceres MES (2011) Graphis is two genera: a remarkable case of parallel evolution in lichenized Ascomycota. Taxon 60:99–107Google Scholar
  55. Pyron RA, Costa GC, Patten MA, Burbrink FT (2015) Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol Rev Cambridge Philos Soc 90:1248–1262.  https://doi.org/10.1111/brv.12154 CrossRefPubMedGoogle Scholar
  56. Rambaut A, Drummond AJ (2009) Tracer v1.5 [computer program]. Available at:http://tgree.bio.ed.ac.uk/software/tracer/. Accessed 28 Aug 2017
  57. Regnier C, Achaz G, Lambert A, Cowie RH, Bouchet P, Fontaine B (2015) Mass extinction in poorly known taxa. Proc Natl Acad Sci USA 112:7761–7766.  https://doi.org/10.1073/pnas.1502350112 CrossRefPubMedGoogle Scholar
  58. Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar
  59. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  60. Rosenbaum G, Liste GS, Duboz C (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359:117–129CrossRefGoogle Scholar
  61. Rothfels CJ, Windham MD, Grusz AL, Gastony GJ, Pryer KM (2008) Toward a monophyletic Notholaena (Pteridaceae): resolving patterns of evolutionary convergence in xeric-adapted ferns. Taxon 57: 713–724. http://www.jstor.org/stable/27756703
  62. Roux J, Boulos L (1972) Révision systématique du genre Sonchus L. s.l. II. Étude caryologique. Bot Not 125:306–309Google Scholar
  63. Silva JL, Lim S-Y, Kim S-C, Mejías JA (2015a) Phylogeography of cliff -dwelling relicts with a highly narrow and disjunct distribution in the Western Mediterranean. Amer J Bot 102:1538–1551CrossRefGoogle Scholar
  64. Silva JL, Mejías JA, García MB (2015b) Demographic vulnerability in cliff-dwelling Sonchus species endemic to the Western Mediterranean. Basic App Ecol 16:316–324.  https://doi.org/10.3732/ajb.1500152 CrossRefGoogle Scholar
  65. Skottsberg C (1922) The natural history of Juan Fernández and Easter Island 2: botany, part 2 (7). Almqvist & Wiksells Boktryckeri, UppsalaGoogle Scholar
  66. Stebbins GL (1938) Cytological characteristics associated with the different growth habits in the dicotyledons. Amer J Bot 25:189–198CrossRefGoogle Scholar
  67. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  68. Steffen S, Kadereit JW (2014) Parallel evolution of flower reduction in two alpine Soldanella species (Primulaceae). Bot J Linn Soc 175:409–422CrossRefGoogle Scholar
  69. Swofford D (2002) PAUP*. phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  70. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, OxfordCrossRefGoogle Scholar
  71. Tjio JH, Levan A (1950) The use of oxyquinoline in chromosome analysis. Anales Estac Exp Aula Dei 2:21–64Google Scholar
  72. Tremetsberger K, Gemeinholzer B, Zetsche H, Blackmore S, Kilian N, Talavera S (2013) Divergence time estimation in Cichorieae (Asteraceae) using a fossil-calibrated relaxed molecular clock. Organisms Diversity Evol 13:1–13.  https://doi.org/10.1007/s13127-012-0094-2 CrossRefGoogle Scholar
  73. Valdecasas AG, Camacho AI (2003) Conservation to the rescue of taxonomy. Biodivers & Conservation 12:113–117CrossRefGoogle Scholar
  74. Valdés B (1991) Andalucia and the Rif. Floristic links and a common flora. Bot Chron (Patras) 10:117–124Google Scholar
  75. van Vuuren DP, Sala OE, Pereira, HM (2006) The future of vascular plant diversity under four global scenarios. Ecol Soc 11: 25. http://www.ecologyandsociety.org/vol11/iss2/art25/
  76. Wägele H, Klussmann-Kolb A, Kuhlmann M, Haszprunar G, Lindberg D, Koch A, Wägele JW (2011) The taxonomist - an endangered race. A practical proposal for its survival. Frontiers Zool 8: 25. http://www.frontiersinzoology.com/content/8/1/25 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wege JA, Thiele KR, Shepherd K, Butcher AR, Macfarlane TD, Coates DJ (2015) Strategic taxonomy in a biodiverse landscape: a novel approach to maximizing conservation outcomes for rare and poorly known flora. Biodivers & Conservation 24:17–32.  https://doi.org/10.1007/s10531-014-0785-4 CrossRefGoogle Scholar
  78. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Rev Ecol Evol Syst 36: 519–539. http://www.jstor.org/stable/30033815 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Biology and EcologyUniversidad de SevillaSevilleSpain
  2. 2.Emirates Center for Wildlife Propagation, Province de BoulemaneMissourMorocco
  3. 3.Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
  4. 4.Department of Integrated SciencesUniversidad de Huelva (Campus El Carmen)HuelvaSpain
  5. 5.Reneco International Wildlife Consultants LLCAbu DhabiUnited Arab Emirates

Personalised recommendations