Plant Systematics and Evolution

, Volume 304, Issue 6, pp 757–762 | Cite as

Brassicales: an update on chromosomal evolution and ancient polyploidy

  • Martin A. LysakEmail author
Original Article


Brassicales comprise 17 families, c. 400 genera and more than 4600 species. Despite the mustard family (crucifers, Brassicaceae) continuing to be the subject of intensive research, the remaining 16 families are largely under studied. Here I summarize the available data on chromosome number and genome size variation across Brassicales in the context of a robust phylogenetic framework. This analysis has revealed extensive knowledge gaps in karyological data for non-crucifer and species-rich families in particular (i.e., Capparaceae, Cleomaceae, Resedaceae and Tropaeolaceae). A parsimonious interpretation of the combined chromosomal and phylogenetic data set suggests that the ancestral pre-Brassicales genome had 9 or 14 chromosome pairs, later multiplied by the At-β (beta) whole-genome duplication (WGD) to n = 18 or 28. This WGD was followed by post-polyploid diploidization marked by diversification to 12 or 13 families and independent decreases in chromosome numbers. Family-specific WGDs are proposed to precede the diversification of Capparaceae, Resedaceae and Tropaeolaceae.


Ancestral genome evolution Chromosome number evolution Paleogenomics Paleopolyploidy Post-polyploid diversification Whole-genome duplications 



I thank Patrick P. Edger for discussing the phylogenetic placement of the At-β event and Terezie Mandáková for her help with the chromosome images presented in Fig. 2. This work was supported by a research grant from the Czech Science Foundation (Grant No. P501/12/G090) and the CEITEC 2020 Project (Grant No. LQ1601).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

606_2018_1507_MOESM1_ESM.xlsx (20 kb)
Supplementary material 1 (XLSX 20 kb)


  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. CrossRefGoogle Scholar
  2. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2010) The genome of Theobroma cacao. Nat Genet 43:101–108. CrossRefPubMedGoogle Scholar
  3. Barker MS, Vogel H, Schranz ME (2009) Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol 1:391–399. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bennett MD, Leitch IJ (2012) Angiosperm DNA C-values database (release 8.0, Dec. 2012). Available at:
  5. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930):433–438. CrossRefPubMedGoogle Scholar
  6. Cardinal-McTeague WM, Sytsma KJ, Hall JC (2016) Biogeography and diversification of Brassicales: a 103 million year tale. Molec Phylogen Evol 99:204–224. CrossRefGoogle Scholar
  7. Cheng S, van den Bergh E, Zeng P, Zhong X, Xu J, Liu X, Hofberger J, de Bruijn S, Bhide AS, Kuelahoglu C, Bian C, Chen J, Fan G, Kaufmann K, Hall JC, Becker A, Bräutigam A, Weber AP, Shi C, Zheng Z, Li W, Lv M, Tao Y, Wang J, Zou H, Quan Z, Hibberd JM, Zhang G, Zhu XG, Xu X, Schranz ME (2013) The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers. Pl Cell 25:2813–2830. CrossRefGoogle Scholar
  8. Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217. CrossRefGoogle Scholar
  9. Cremonini R (2005) Low chromosome number angiosperms. Caryologia 58:403–409. CrossRefGoogle Scholar
  10. Edger PP, Hall JC, Harkess A, Tang M, Coombs J, Mohammadin S, Schranz ME, Xiong Z, Leebens-Mack J, Meyers BC, Systma KJ, Koch M, Al-Shehbaz IA, Pires JC (2018) Brassicales phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Amer J Bot 105.
  11. Gandolfo MA, Dibbern MC, Romero EJ (1988) Akania patagonica n. sp. and additional material on Akania americana Romero & Hickey (Akaniaceae), from Paleocene sediments of Patagonia. Bull Torrey Bot Club 115:83–88. CrossRefGoogle Scholar
  12. Huang CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Ma H (2016) Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molec Biol Evol 33:2820–2835. CrossRefGoogle Scholar
  13. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. CrossRefPubMedGoogle Scholar
  14. Kiefer M, Schmickl R, German DA, Lysak M, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA (2014) BrassiBase: introduction to a novel database on Brassicaceae evolution. Pl Cell Physiol 55:e3. CrossRefPubMedGoogle Scholar
  15. Koch MA, German DA, Kiefer M, Franzke A (2018) Database taxonomics as key to modern plant biology. Trends Pl Sci 23:4–6. CrossRefGoogle Scholar
  16. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mandáková T, Lysak MA (2018) Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Pl Biol 42:55–65. CrossRefGoogle Scholar
  18. Mandáková T, Li Z, Barker MS, Lysak MA (2017) Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Pl J 91:3–21. CrossRefGoogle Scholar
  19. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Patchell MJ, Roalson EH, Hall JC (2014) Resolved phylogeny of Cleomaceae based on all three genomes. Taxon 63:315–328. CrossRefGoogle Scholar
  21. Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The Chromosome Counts Database (CCDB)—a community resource of plant chromosome numbers. New Phytol 206:19–26. CrossRefPubMedGoogle Scholar
  22. Rockinger A, Sousa A, Carvalho FA, Renner SS (2016) Chromosome number reduction in the sister clade of Carica papaya with concomitant genome size doubling. Amer J Bot 103:1082–1088. CrossRefGoogle Scholar
  23. Salse J (2016) Ancestors of modern plant crops. Curr Opin Pl Biol 30:134–142. CrossRefGoogle Scholar
  24. Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Pl Cell 18:1152–1165. CrossRefGoogle Scholar
  25. Schranz ME, Mohammadin S, Edger PP (2012) Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr Opin Pl Biol 15:147–153. CrossRefGoogle Scholar
  26. Stevens PF (2001 onwards) Angiosperm phylogeny website. Version 14, July 2017 [and more or less continuously updated since]. Available at:
  27. Tian Y, Zeng Y, Zhang J, Yang C, Yan L, Wang X, Shi C, Xie J, Dai T, Peng L, Zeng Huan Y, Xu A, Huang Y, Zhang J, Ma X, Dong Y, Hao S, Sheng J (2015) High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop. Sci China Life Sci 58:627–638. CrossRefPubMedGoogle Scholar
  28. Warwick S, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Pl Syst Evol 259:237–248. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEITEC – Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations