Assessment of spatial–temporal variation in natural populations of Brassica incana in south Italy: implications for conservation

Original Article
  • 25 Downloads

Abstract

Brassica incana is a secondary-gene pool wild relative of Brassica oleracea. Twenty-two B. incana populations are recorded in Italy, where the species has recently been pointed out as in priority need of conservation. While data on the spatial and temporal variation of B. incana Italian populations are completely lacking, this information is useful in conservation planning for this species. Three populations from the Sorrento peninsula and from the islands of Ischia and Capri, collected in 1984 and 2012, were characterised for 12 morpho-phenological and 21 genetic traits to assess their spatial–temporal variation. The populations were quite different for morpho-phenological and genetic traits. Spatial differentiation was high and easily explained by the isolation. Temporal differentiation between the Sorrento and Ischia populations was high and explained by a reduction in the population census across time, while it was not significant between the two Capri accessions as such pointing to a major effect of genetic drift. Numerical dimension is extremely relevant in evaluating conservation priorities since it has a major impact on population dynamics over time. The Sorrento and Ischia populations are under threat and urgently need conservation actions, suggesting an alarming scenario for the survival of other crop wild relative populations which are similar in census. Our data also show that, in an allogamous and self-incompatible species like B. incana, populations of 100–200 individuals maintain high allelic diversity. According to obtained results, natural populations of species with similar reproductive system and census can be considered at low risk of genetic erosion.

Keywords

Brassica incana Crop wild relatives Microevolution Plant population genetics Spatial–temporal genetic variation 

Notes

Acknowledgements

S. Ciancaleoni and L. Raggi contributed equally to this work and must be both considered first authors. This research was partially funded by Fondo Ricerca di Base 2015, Università degli Studi di Perugia, “Analisi spazio-temporale dei cambiamenti genetici e valutazione agronomica e morfo-fisiologica in moltiplicazioni di una varietà sintetica e in linee inbred di Brassica oleracea L.” and by the European Community’s Seventh Framework Programme (FP/2007-2013) under the Grant Agreement No. 266394 “PGR Secure”. Thanks are due to Prof. Roberto Venanzoni (Università degli Studi di Perugia) and Dr. Lorenzo Panella for their help in collecting B. incana wild populations in 2012. The English editing has been done by Miriam Drissi.

Supplementary material

606_2018_1505_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1142 kb)
606_2018_1505_MOESM2_ESM.pdf (355 kb)
Supplementary material 2 (PDF 355 kb)
606_2018_1505_MOESM3_ESM.pdf (283 kb)
Supplementary material 3 (PDF 282 kb)
606_2018_1505_MOESM4_ESM.pdf (257 kb)
Supplementary material 4 (PDF 257 kb)
606_2018_1505_MOESM5_ESM.pdf (459 kb)
Supplementary material 5 (PDF 459 kb)
606_2018_1505_MOESM6_ESM.pdf (346 kb)
Supplementary material 6 (PDF 346 kb)

References

  1. Aksoy S, Almeida-Val VMF, Azevedo VCR et al (2013) Permanent genetic resources added to molecular ecology resources database 1 October 2012–30 November 2012. Molec Ecol Resources 13:341–343.  https://doi.org/10.1111/1755-0998.12061 CrossRefGoogle Scholar
  2. Alberto F, Gouveia L, Arnaud-Haond S et al (2005) Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Molec Ecol 14:2669–2681.  https://doi.org/10.1111/j.1365-294X.2005.02640.x CrossRefGoogle Scholar
  3. Allender CJ, Allainguillaume J, Lynn J, King GJ (2007) Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n = 9) wild relatives. Theor Appl Genet 114:609–618.  https://doi.org/10.1007/s00122-006-0461-5 CrossRefPubMedGoogle Scholar
  4. Bodnaryk RP (1992) Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Canad J Pl Sci 72:1295–1303.  https://doi.org/10.4141/cjps92-163 CrossRefGoogle Scholar
  5. Bretting PK, Widrlechner MP (1995) Genetic markers and horticultural germplasm management. HortScience 30:1349–1356Google Scholar
  6. Burgess B, Mountford H, Hopkins CJ et al (2006) Identification and characterization of simple sequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgun sequences. Molec Ecol Notes 6:1191–1194.  https://doi.org/10.1111/j.1471-8286.2006.01488.x CrossRefGoogle Scholar
  7. Cheng X, Xu J, Xia S et al (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131.  https://doi.org/10.1007/s00122-009-0967-8 CrossRefPubMedGoogle Scholar
  8. Ciancaleoni S, Chiarenza GL, Raggi L et al (2013) Diversity characterisation of broccoli (Brassica oleracea L. var. italica Plenck) landraces for their on-farm (in situ) safeguard and use in breeding programs. Genet Resources Crop Evol 61:451–464.  https://doi.org/10.1007/s10722-013-0049-2 CrossRefGoogle Scholar
  9. Ciancaleoni S, Raggi L, Negri V (2014) Genetic outcomes from a farmer-assisted landrace selection programme to develop a synthetic variety of broccoli. Pl Genet Resources 12:349–352.  https://doi.org/10.1017/S1479262113000592 CrossRefGoogle Scholar
  10. Cole CT (2003) Genetic variation in rare and common plants. Annual Rev Ecol Evol Syst 34:213–237.  https://doi.org/10.1146/annurev.ecolsys.34.030102.151717 CrossRefGoogle Scholar
  11. De Mendiburu F (2015) Agricolae: Statistical procedures for agricultural research. Available at http://CRAN.R-project.org/package=agricolae
  12. Dent E, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  13. Disi JO, Mei J, Wei D et al (2014) Inheritance of leaf and stem resistance to Sclerotinia sclerotiorum in a cross between Brassica incana and Brassica oleracea var. alboglabra. J Agric Sci 152:146–152.  https://doi.org/10.1017/S0021859613000087 CrossRefGoogle Scholar
  14. Dixon GR (2007) Vegetable Brassicas and related crucifers. CABI Publishing, OxfordshireGoogle Scholar
  15. Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molec Ecol Resources 14:209–214.  https://doi.org/10.1111/1755-0998.12157 CrossRefGoogle Scholar
  16. Edh K, Widén B, Ceplitis A (2007) Nuclear and chloroplast microsatellites reveal extreme population differentiation and limited gene flow in the Aegean endemic Brassica cretica (Brassicaceae). Molec Ecol 16:4972–4983.  https://doi.org/10.1111/j.1365-294X.2007.03585.x CrossRefGoogle Scholar
  17. Ellis PR, Pink DAC, Barber NE, Mead A (1999) Identification of high levels of resistance to cabbage root fly, Delia radicum, in wild Brassica species. Euphytica 110:207–214.  https://doi.org/10.3732/ajb.1400024 CrossRefGoogle Scholar
  18. Ellis PR, Kift NB, Pink DAC et al (2000) Variation in resistance to the cabbage aphid (Brevicoryne brassicae) between and within wild and cultivated Brassica species. Genet Resources Crop Evol 47:395–401.  https://doi.org/10.1023/A:1008755411053 CrossRefGoogle Scholar
  19. Ellstrand NC (2014) Is gene flow the most important evolutionary force in plants? Amer J Bot 101:737–753.  https://doi.org/10.3732/ajb.1400024 CrossRefGoogle Scholar
  20. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Evol Syst 24:217–242CrossRefGoogle Scholar
  21. Ellstrand NC, Devlin B, Marshall DL (1989) Gene flow by pollen into small populations: data from experimental and natural stands of wild radish. Proc Natl Acad Sci USA 86:9044–9047.  https://doi.org/10.1073/pnas.86.22.9044 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Enjalbert J, Dawson JC, Paillard S et al (2011) Dynamic management of crop diversity: from an experimental approach to on-farm conservation. Compt Rend Biol 334:458–468.  https://doi.org/10.1016/j.crvi.2011.03.005 CrossRefGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  24. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Resources 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  25. FAO (2011) Second global plan of action for plant genetic resources for food and agriculture. FAO, RomeGoogle Scholar
  26. Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327.  https://doi.org/10.1038/sj.hdy.6880980 CrossRefPubMedGoogle Scholar
  27. Geraci A, Chèvre A-M, Divaret I et al (2004) Isozyme analysis of genetic diversity in wild Sicilian populations of Brassica sect. Brassica in view of genetic resources management. Genet Resources Crop Evol 51:137–146CrossRefGoogle Scholar
  28. Gomaa NH, Montesinos-Navarro A, Alonso-Blanco C, Picò FX (2011) Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Molec Ecol 20:3540–3554.  https://doi.org/10.1111/j.1365-294X.2011.05193.x Google Scholar
  29. Gustafsson M, Lannér-Herrera C (1997a) Overview of the Brassica oleracea complex: their distribution and ecological specificities. Bocconea 7:27–37Google Scholar
  30. Gustafsson M, Lannér-Herrera C (1997b) Diversity in natural populations of wild cabbage (Brassica oleracea L.). Bocconea 7:95–102Google Scholar
  31. Hale AL, Farnham MW (2006) Use of PCR-based markers for differentiating elite broccoli inbreds. J Amer Soc Hort Sci 131:418–4223Google Scholar
  32. Happstadius I, Ljungberg A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Pl Breed 122:30–34.  https://doi.org/10.1046/j.1439-0523.2003.00774.x CrossRefGoogle Scholar
  33. Hurtrez-Boussès S (1996) Genetic diffrentiation among natural Brassica insularis Moris: implication for conservation guidelines. Biol Conservation 76:25–30CrossRefGoogle Scholar
  34. Husson F, Josse J, Le S, Mazet J (2013) FactoMineR: Multivariate exploratory data analysis and data mining. Available at https://CRAN.R-project.org/package=FactoMineR
  35. IBPGR (1990) Descriptors for Brassica and Raphanus. IBPGR, RomeGoogle Scholar
  36. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13.  https://doi.org/10.1186/1471-2156-6-13 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jorde PE, Ryman N (1995) Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics 139:1077–1090.  https://doi.org/10.1186/1471-2156-6-13 PubMedPubMedCentralGoogle Scholar
  38. Jump AS, Peñ J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Letters 8:1010–1020.  https://doi.org/10.1111/j.1461-0248.2005.00796.x CrossRefGoogle Scholar
  39. Kang J, Fang Z, Wang X et al (2011) Genetic diversity and relationships among cabbage (Brassica oleracea var. capitata) landraces in China revealed by AFLP markers. African J Biotechnol 10:5940–5949Google Scholar
  40. Keiša A, Maxted N, Ford-Lloyd B (2008) The assessment of biodiversity loss over time: wild legumes in Syria. Genet Resources Crop Evol 55:603–612.  https://doi.org/10.1007/s10722-007-9264-z CrossRefGoogle Scholar
  41. Kinian S, Quiros C (1992) Construction of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554.  https://doi.org/10.1007/BF00224150 Google Scholar
  42. Landucci F, Panella L, Lucarini D et al (2014) A prioritized inventory of crop wild relatives and wild harvested plants of Italy. Crop Sci 54:1628–1644.  https://doi.org/10.2135/cropsci2013.05.0355 CrossRefGoogle Scholar
  43. Lannér-Herrera C, Gustafsson M, Falt A-S, Bryngelsson T (1996) Diversity in natural populations of wild Brassica oleracea as estimated by isozyme and RAPD analysis. Genet Resources Crop Evol 43:13–23.  https://doi.org/10.1007/BF00126936 CrossRefGoogle Scholar
  44. Lazaro A, Aguinagalde I (1998) Genetic diversity in Brassica oleracea L. (Cruciferae) and wild relatives (2n = 18) using RAPD markers. Ann Appl Biol 82:829–833Google Scholar
  45. Levy F, Neal CL (1999) Spatial and temporal genetic structure in chloroplast and allozyme markers in Phacelia dubia implicate genetic drift. Heredity 82:422–431CrossRefPubMedGoogle Scholar
  46. Li YC, Krugman T, Fahima T et al (2001) Spatiotemporal allozyme divergence caused by aridity stress in a natural population of wild wheat, Triticum dicoccoides, at the ammiad microsite, Israel. Theor Appl Genet 102:853–864.  https://doi.org/10.1007/s001220000474 CrossRefGoogle Scholar
  47. Li H, Chen X, Yang Y et al (2011) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Molec Breed 28:585–596.  https://doi.org/10.1007/s11032-010-9509-y CrossRefGoogle Scholar
  48. Ligges U, Machle M (2003) Scatterplot3d—an R Package for visualizing multivariate data. J Stat Software 8:1–20CrossRefGoogle Scholar
  49. Louarn S, Torp AM, Holme IB et al (2007) Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genet Resources Crop Evol 54:1717–1725.  https://doi.org/10.1007/s10722-006-9181-6 CrossRefGoogle Scholar
  50. Lowe A, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112.  https://doi.org/10.1007/s00122-003-1522-7 CrossRefPubMedGoogle Scholar
  51. Luikart G, Cornuet J, Allendorf FW (1999) Temporal changes in allele frequencies provide estimates of population bottleneck size. Conservation Biol 13:523–530CrossRefGoogle Scholar
  52. Maggioni L, von Bothmer R, Poulsen G et al (2014) Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy. Hereditas 151:145–158.  https://doi.org/10.1111/hrd2.00058 CrossRefPubMedGoogle Scholar
  53. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064PubMedPubMedCentralGoogle Scholar
  54. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  55. Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640PubMedPubMedCentralGoogle Scholar
  56. Nevo E, Fu Y-B, Pavlicek T et al (2012) Evolution of wild cereals during 28 years of global warming in Israel. Proc Natl Acad Sci USA 109:3412–3415.  https://doi.org/10.1073/pnas.1121411109 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Peakall R, Beattie AJ (1995) Does ant dispersal of seeds in Sclerolaena diacantha (Chenopodiaceae) generate local spatial genetic structure? Heredity 75:351–361.  https://doi.org/10.1038/hdy.1995.146 CrossRefGoogle Scholar
  58. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  59. Pinheiro J, Bates D (2000) Mixed-effects models in S and S-Plus. Springer, New YorkCrossRefGoogle Scholar
  60. Pollak E (1983) A new method for estimating the effective population size from allele frequency changes. Genetics 104:531–548PubMedPubMedCentralGoogle Scholar
  61. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  62. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org
  63. Raggi L, Ceccarelli S, Negri V (2016) Evolution of a barley composite cross derived population: an insight gained by molecular markers. J Agric Sci 154:23–39.  https://doi.org/10.1017/S0021859614001269 CrossRefGoogle Scholar
  64. Ramsey A, Ellis P (1994) Resitence in wild Brassicas to the cabbage whitefly, Aleyrodes Proletella. In: ISHS Brassica Symposium-IX Crucifer Genetics Workshop, pp 507–514Google Scholar
  65. Raquin A-L, Brabant P, Rhoné B et al (2008) Soft selective sweep near a gene that increases plant height in wheat. Molec Ecol 17:741–756.  https://doi.org/10.1111/j.1365-294X.2007.03620.x CrossRefGoogle Scholar
  66. Raybould AF, Mogg RJ, Clarke RT et al (1999) Variation and population structure at microsatellite and isozyme loci in wild cabbage (Brassica oleracea L.) in Dorset (UK). Genet Resources Crop Evol 46:351–360.  https://doi.org/10.1023/A:1008658630440 CrossRefGoogle Scholar
  67. Rhoné B, Remoué C, Galic N et al (2008) Insight into the genetic bases of climatic adaptation in experimentally evolving wheat populations. Molec Ecol 17:930–943.  https://doi.org/10.1111/j.1365-294X.2007.03619.x CrossRefGoogle Scholar
  68. Richards CM, Emery SN, McCauley DE (2003) Genetic and demographic dynamics of small populations of Silene latifolia. Heredity 90:181–186.  https://doi.org/10.1038/sj.hdy.6800214 CrossRefPubMedGoogle Scholar
  69. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33.  https://doi.org/10.1016/j.tree.2006.08.009 CrossRefPubMedGoogle Scholar
  70. Scialabba A, Geraci A, Robba L (2003) Biology and conservation strategies of genetic diversity in wild Sicilian populations of Brassica sect. Brassica (Cruciferae). Bocconea 16:473–486Google Scholar
  71. Snogerup S, Gustafsson M, von Bothmer R (1990) Brassica sect. Brassica (Brassicaceae). I. Taxonomy and variation. Willdenowia 19:271–365Google Scholar
  72. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Thormann I, Reeves P, Thumm S et al (2016) Genotypic and phenotypic changes in wild barley (Hordeum vulgare subsp. spontaneum) during a period of climate change in Jordan. Genet Resources Crop Evol 64:1295–1312.  https://doi.org/10.1007/s10722-016-0437-5 CrossRefGoogle Scholar
  74. Tian Y, Wang C (2007) Genetic diversity analysis of Brassica oleracea L. by SSR. J Northeast Agric Univ (Engl Ed) 14:202–205Google Scholar
  75. Tonguç M, Griffiths PD (2004) Genetic relationships of Brassica vegetables determined using database derived simple sequence repeats. Euphytica 137:193–201.  https://doi.org/10.1023/B:EUPH.0000041577.84388.43 CrossRefGoogle Scholar
  76. van Hintum TJL, van de Wiel CCM, Visser DL et al (2007) The distribution of genetic diversity in a Brassica oleracea gene bank collection related to the effects on diversity of regeneration, as measured with AFLPs. Theor Appl Genet 114:777–786.  https://doi.org/10.1007/s00122-006-0456-2 CrossRefPubMedPubMedCentralGoogle Scholar
  77. van Loon E, Cleary D, Fauvelot C (2007) ARES: software to compare allelic richness between uneven samples. Molec Ecol Notes 7:579–582CrossRefGoogle Scholar
  78. Vekemans X, Hardy O (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Molec Ecol 13:921–935CrossRefGoogle Scholar
  79. Velasco L, Becker H (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet Resources Crop Evol 47:231–238.  https://doi.org/10.1023/A:1008793623395 CrossRefGoogle Scholar
  80. Velasco L, Goffman FD, Becker HC (1998) Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica. Genet Resources Crop Evol 45:371–382.  https://doi.org/10.1023/A:1008628624867 CrossRefGoogle Scholar
  81. Vincent H, Wiersema J, Kell S et al (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conservation 167:265–275.  https://doi.org/10.1016/j.biocon.2013.08.011 CrossRefGoogle Scholar
  82. von Bothmer R, Gustafsson M, Snogerup S (1995) Brassica sect. Brassica (Brassicaceae). II. Inter-and intraspecific crosses with cultivars of B. oleracea. Genet Resources Crop Evol 42:165–178CrossRefGoogle Scholar
  83. Watson-Jones S, Maxted N, Ford-Lloyd B (2006) Population baseline data for monitoring genetic diversity loss for 2010: a case study for Brassica species in the UK. Biol Conservation 132:490–499.  https://doi.org/10.1016/j.biocon.2006.05.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3)Università degli Studi di PerugiaPerugiaItaly

Personalised recommendations