Advertisement

Plant Systematics and Evolution

, Volume 304, Issue 4, pp 511–519 | Cite as

Incipient speciation in a neotropical Gesneriaceae: Columnea kucyniakii is nested within C. strigosa

  • James F. Smith
  • Maggie T.-Y. Ooi
  • John L. Clark
Original Article
  • 190 Downloads

Abstract

Speciation is an ongoing process. Many recognized species are fully divergent from each other and their ancestors, whereas others are in earlier stages in the diversification process. Such incipient speciation may create patterns when one or a few populations are phenotypically distinct, but lack genomic level coalescence from each other or from their ancestral species. As a result, such progenitor-derivative species pairs are likely to lack reciprocal monophyly or generate paraphyletic ancestral species. Here we examine phylogenetic patterns in the Columnea strigosa (Gesneriaceae) complex to evaluate whether populations that have been named C. kucyniakii are reciprocally monophyletic with C. strigosa, its presumed ancestral species. Molecular phylogenetic results do not support reciprocal monophyly of the two species, implying that incipient speciation is occurring within the C. strigosa complex. We hereby recommend that C. kucyniakii be recognized at the specific rank despite the fact that it creates a paraphyletic C. strigosa. These findings bear importance in taxonomic decisions about paraphyletic taxa and recognizing evolutionary and morphologically distinct lineages.

Keywords

Coalescence Paraphyly Progenitor-derivative species pairs Reciprocal monophyly 

Notes

Acknowledgements

We would like to thank Chris Davidson, Sharon Christoph, Eric Tepe, and Tom Croat for sharing silica gel dried material of collections for this analysis as well as anonymous reviewers and the editorial staff of Plant Systematics and Evolution. Financial support for this project was provided by NSF, Grant DEB0949270 JFS and JLC.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

606_2018_1502_MOESM1_ESM.pdf (112 kb)
Supplementary material 1 (PDF 112 kb)
606_2018_1502_MOESM2_ESM.nex (126 kb)
Supplementary material 2 (NEX 126 kb)
606_2018_1502_MOESM3_ESM.fas (127 kb)
Supplementary material 3 (FAS 128 kb)

References

  1. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel Metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415.  https://doi.org/10.1093/bioinformatics/btg427 CrossRefPubMedGoogle Scholar
  2. Anacker BL, Strauss SY (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc Roy Soc Biol Sci Ser B 281:20132980.  https://doi.org/10.1098/rspb.2013.2980 CrossRefGoogle Scholar
  3. Andrew RL, Rieseberg LH (2013) Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes. Evolution 67:2468–2482.  https://doi.org/10.1111/evo.12106 CrossRefPubMedGoogle Scholar
  4. Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia. Molec Phylogen Evol 10:449–463.  https://doi.org/10.1006/mpev.1998.0545 CrossRefGoogle Scholar
  5. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277.  https://doi.org/10.2307/2399880 CrossRefGoogle Scholar
  6. Benton MJ, Pearson PN (2001) Speciation in the fossil record. Trends Ecol Evol 16:405–411.  https://doi.org/10.1016/S0169-5347(01)02149-8 CrossRefPubMedGoogle Scholar
  7. Cheng S, Qiong L, Lu F, Yonezawa T, Yin G, Song Z, Wang Y, Yang J, Zhang W (2017) Phylogeography of Sophora moorcroftiana supports Wu’s hypothesis on the origin of Tibetan alpine flora. J Heredity 2017:1–10Google Scholar
  8. Chung MY, López-Pujol J, Chung MG (2015) Genetic evidence of a progenitor—derivative species pair in East Asian Lilium. Ann Bot Fenn 52:211–218.  https://doi.org/10.1093/jhered/esx028 CrossRefGoogle Scholar
  9. Clark JL, Herendeen PS, Skog LE, Zimmer EA (2006) Phylogenetic relationships and generic boundaries in the tribe Episcieae (Gesneriaceae) inferred from nuclear, chloroplast, and morphological data. Taxon 55:313–336CrossRefGoogle Scholar
  10. Crawford DJ (2010) Progenitor—derivative species pairs and plant speciation. Taxon 59:1413–1423Google Scholar
  11. Crawford DJ, Smith EB (1982) Allozyme variation in Coreopsis nuecensoides and C. nuecensis (Compositae), a progenitor-derivative species pair. Evolution 36:379–386.  https://doi.org/10.1111/j.1558-5646.1982.tb05054.x CrossRefPubMedGoogle Scholar
  12. Dantas SM, Weckstein JD, Bates JM, Krabbe NK, Cadena CD, Robbins MB, Valderrama E, Aleixo A (2016) Molecular systematics of the new world screech-owls (Megascops: Aves, Strigidae): Biogeographic and taxonomic implications. Molec Phylogen Evol 94:626–634.  https://doi.org/10.1016/j.ympev.2015.09.025 CrossRefGoogle Scholar
  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Meth 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefGoogle Scholar
  14. Darwin C (1859) On the origin of species by means of natural selection. Murray, LondonGoogle Scholar
  15. de Lafontaine G, Prunier J, Gérardi S, Bousquet J (2015) Tracking the progression of speciation: Variable patterns of introgression across the genome provide insights on the species delimitation between progenitor–derivative spruces (Picea mariana × P. rubens). Molec Ecol 24:5229–5247.  https://doi.org/10.1111/mec.13377 CrossRefGoogle Scholar
  16. della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M (2001) Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Molec Biol 10:9–18.  https://doi.org/10.1046/j.1365-2583.2001.00235.x CrossRefGoogle Scholar
  17. Demos TC, Achmadi AS, Handika H, Maharadatunkamsi H, Rowe KC, Esselstyn JA (2017) A new species of shrew (Soricomorpha: Crocidura) from Java, Indonesia: possible character displacement despite interspecific gene flow. J Mammal 98:183–193.  https://doi.org/10.1093/jmammal/gyw183 Google Scholar
  18. Dettman JR, Sirjusingh C, Kohn LM, Anderson JB (2007) Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447:585–588.  https://doi.org/10.1038/nature05856 CrossRefPubMedGoogle Scholar
  19. Farris JS (1989) The retention index and the rescaled consistency index. Cladistics 5:417–419CrossRefGoogle Scholar
  20. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefPubMedGoogle Scholar
  21. Gottlieb LD (1973) Genetic differentiation, sympatric speciation and the origin of a diploid species of Stephanomeria. Amer J Bot 60:545–553. http://www.jstor.org/stable/2441378
  22. Greenberg AJ, Moran JR, Coyne JA, Wu C-I (2003) Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302:1754–1757.  https://doi.org/10.1126/science.1090432 CrossRefPubMedGoogle Scholar
  23. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec Ecol 8:521–523Google Scholar
  24. Hamilton A (2014) The evolution of phylogenetic systematics. University of California Press, BerkeleyGoogle Scholar
  25. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  26. Kluge AG, Farris SJ (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32.  https://doi.org/10.1093/sysbio/18.1.1 CrossRefGoogle Scholar
  27. Lachance M-A, Fedor AN (2014) Catching speciation in the act: Metschnikowia bowlesiae sp. nov., a yeast species found in nitidulid beetles of Hawaii and Belize. Antonie van Leeuwenhoek J Microbiol Serol 105:541–550.  https://doi.org/10.1007/s10482-013-0106-z CrossRefGoogle Scholar
  28. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molec Biol Evol 29:1695–1701.  https://doi.org/10.1093/molbev/mss020 CrossRefPubMedGoogle Scholar
  29. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop, New Orleans, LA, 14 Nov 2010, pp 1–8.  https://doi.org/10.1109/gce.2010.5676129
  30. Müller K (2004) PRAP—computation of Bremer support for large data sets. Molec Phylogen Evol 31:780–782CrossRefGoogle Scholar
  31. Müller K (2005) SeqState. Appl Bioinformatics 4:65CrossRefPubMedGoogle Scholar
  32. Müller K, Quandt D, Müller J, Neinhuis C (2005) PhyDE 0.9971: Phylogenetic data editor. Available at: http://www.phyde.de
  33. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583.  https://doi.org/10.1093/bioinformatics/btm388 CrossRefPubMedGoogle Scholar
  34. Ownbey M (1950) Natural hybridization and amphiploidy in the genus Tragopogon. Amer J Bot 37:487–499. http://www.jstor.org/stable/2438023
  35. Oxelman B, Lidén M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Pl Syst Evol 206:393–410CrossRefGoogle Scholar
  36. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Pl Cell 13:1735–1747.  https://doi.org/10.1105/TPC.010082 CrossRefGoogle Scholar
  37. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808.  https://doi.org/10.1080/10635150490522304 CrossRefPubMedGoogle Scholar
  38. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer
  39. Raymond L-FM (1964) A new Columnea of Sect. Pentadenia from Ecuador. Svensk Bot Tidskr 58(185):1964Google Scholar
  40. Rice WR, Salt GW (1988) Speciation via disruptive selection on habitat preference: experimental evidence. Amer Naturalist 131:911–917CrossRefGoogle Scholar
  41. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  42. Rosindell J, Cornell SJ, Hubbell SP, Etienne RS (2010) Protracted speciation revitalizes the neutral theory of biodiversity. Ecol Letters 13:716–727.  https://doi.org/10.1111/j.1461-0248.2010.01463.x CrossRefGoogle Scholar
  43. Schulte LJ, Clark JL, Novak SJ, Ooi MT-Y, Smith JF (2014) Paraphyly of Section Stygnanthe (Columnea, Gesneriaceae), a new section inferred from ITS and chloroplast DNA data, and a revision of the species of Section Angustiflorae. Syst Bot 39:613–636.  https://doi.org/10.1600/036364414X680861 CrossRefGoogle Scholar
  44. Schulte LJ, Clark JL, Novak SJ, Jeffries SK, Smith JF (2015) Speciation within Columnea section Angustiflorae (Gesneriaceae): Islands, pollinators and climate. Molec Phylogen Evol 84:125–144.  https://doi.org/10.1016/j.ympev.2014.12.008 CrossRefGoogle Scholar
  45. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288.  https://doi.org/10.3732/ajb.94.3.275 CrossRefGoogle Scholar
  46. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508.  https://doi.org/10.1080/10635150290069913 CrossRefPubMedGoogle Scholar
  47. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247.  https://doi.org/10.1093/bioinformatics/17.12.1246 CrossRefPubMedGoogle Scholar
  48. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381. http://www.jstor.org/stable/2585224
  49. Smith JF (1994) Systematics of Columnea section Pentadenia and section Stygnanthe (Gesneriaceae). Syst Bot Monogr 44:1–89. http://www.jstor.org/stable/25027846
  50. Smith JF, Sytsma KJ (1994) Evolution in the Andean epiphytic genus Columnea (Gesneriaceae). Part II. Chloroplast DNA restriction site variation. Syst Bot 19:317–336. http://www.jstor.org/stable/2419605
  51. Smith JF, Wolfram JC, Brown KD, Carroll CL, Denton DS (1997) Tribal relationships in the Gesneriaceae: evidence from DNA sequences of the chloroplast gene ndhF. Ann Missouri Bot Gard 8:50–66. http://www.jstor.org/stable/2399953
  52. Smith JF, Hileman LC, Powell MP, Baum DA (2004) Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae (Gesneriaceae). Molec Phylogen Evol 31:765–779.  https://doi.org/10.1016/j.ympev.2003.09.012 CrossRefGoogle Scholar
  53. Smith JF, Ooi MT, Schulte L, Amaya-Marquez M, Clark JL (2013) Searching for monophyly in the subgeneric classification systems of Columnea (Gesneriaceae). Selbyana 31:126–142Google Scholar
  54. Smith JF, Clark JL, Amaya-Márquez M, Marín-Gómez OH (2017) Resolving incongruence: species of hybrid origin in Columnea (Gesneriaceae). Molec Phylogen Evol 106:228–240. http://www.jstor.org/stable/24894285
  55. Sobel JM, Streisfeld MA (2015) Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution 69:447–461.  https://doi.org/10.1111/evo.12589 CrossRefPubMedGoogle Scholar
  56. Soltis DE, Soltis PS (1989) Allopolyploid speciation in Tragopogon: insights from chloroplast DNA. Amer J Bot 76:1119–1124. http://www.jstor.org/stable/2444824
  57. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Stervander M, Alström P, Olsson U, Ottosson U, Hansson B, Bensch S (2016) Multiple instances of paraphyletic species and cryptic taxa revealed by mitochondrial and nuclear RAD data for Calandrella larks (Aves: Alaudidae). Molec Phylogen Evol 102:233–245.  https://doi.org/10.1016/j.ympev.2016.05.032 CrossRefGoogle Scholar
  59. Stuessy TF, Hörandl E (2014a) The importance of comprehensive phylogenetic (evolutionary) classification—a response to Schmidt-Lebuhn’s commentary on paraphyletic taxa. Cladistics 30:291–293.  https://doi.org/10.1111/cla.12038 CrossRefGoogle Scholar
  60. Stuessy TF, Hörandl E (2014b) Evolutionary systematics and paraphyly: introduction. Ann Missouri Bot Gard 100:2–5.  https://doi.org/10.3417/2012083 CrossRefGoogle Scholar
  61. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, SunderlandGoogle Scholar
  62. Wiehler H (1983) Synopsis of the neotropical Gesneriaceae. Selbyana 6:1–219. http://www.jstor.org/stable/41759498
  63. Wilson AB, Noack-Kunnmann K, Meyer A (2000) Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: Sexual selection versus ecological diversification. Proc Roy Soc Biol Sci Ser B 267:2133–2141.  https://doi.org/10.1098/rspb.2000.1260 CrossRefGoogle Scholar
  64. Wu CI, Hollocher H, Begun DJ, Aquadro CF, Xu Y, Wu ML (1995) Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation. Proc Nat Acad Sci USA 92:2519–2523.  https://doi.org/10.1073/pnas.92.7.2519 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yin H, Yan X, Zhang W, Shi Y, Qian C, Yin C, Tian F, Wang X, Ma X-F (2016) Geographical or ecological divergence between the parapatric species Ephedra sinica and E. intermedia? Pl Syst Evol 302:1157–1170.  https://doi.org/10.1007/s00606-016-1323-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • James F. Smith
    • 1
  • Maggie T.-Y. Ooi
    • 1
  • John L. Clark
    • 2
  1. 1.Department of Biological SciencesBoise State UniversityBoiseUSA
  2. 2.The Lawrenceville School: Science DepartmentThe Lawrenceville SchoolLawrencevilleUSA

Personalised recommendations