Advertisement

Plant Systematics and Evolution

, Volume 304, Issue 3, pp 387–396 | Cite as

Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next-generation sequencing data

  • Alexander Belyayev
  • Ladislava Paštová
  • Judith Fehrer
  • Jiřina Josefiová
  • Jindřich Chrtek
  • Patrik Mráz
Original Article

Abstract

The highly repetitive DNA fraction of the eukaryotic genome is considered a mobile, rapidly changing entity, thus reflecting trajectories of short-term evolutionary change. It consists of several large classes in which transposable elements and satellite DNA (satDNA) predominate. Despite a growing awareness of its structure and functional significance, the evolutionary dynamics of repetitive elements and, particularly, satDNA remain poorly characterized. Next-generation sequencing (NGS) has opened up new possibilities for high-throughput genome analysis. Here, we applied satDNA repeatome elements derived from NGS data as probes for fluorescence in situ hybridization to characterize the karyotypes of three diploid hawkweed species of the predominantly polyploid apomictic genus Hieracium, namely H. intybaceum, H. prenanthoides and H. alpinum. Three cluster-distributed, genus-specific satDNA elements that are not present in the sister genus Pilosella were identified; notably, one element spans the functional centromeres. Each of the investigated diploids possessed a species-specific assortment of detected repeats. Their utilization as molecular-cytogenetic markers, in combination with ribosomal DNA loci, allowed for the development of a system to identify the individual chromosomes of the Hieracium species, thus providing a basis for the future investigation of karyotype evolution in diploid hawkweeds and for exploring satDNA dynamics in hybrids and apomicts of allopolyploid origin.

Keywords

FISH Hieracium Karyotype NGS Repetitive elements satDNA 

Notes

Acknowledgements

The authors are most grateful to Jiří Macas and Danijela Greguraš for helpful comments. We thank Andreas Houben for providing the pTa71 probe and Lenka Flašková for the preparation of NGS libraries. The study was financially supported by the long-term research development project no. RVO 67985939 from the Academy of Sciences of the Czech Republic and the Czech Science Foundation (GAČR, Grants No. 17-14620S and 14-02858S).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Human or animal participants

The present research does not involve human or animal participants. All authors have approved the manuscript.

Supplementary material

606_2017_1483_MOESM1_ESM.pdf (256 kb)
Supplementary material 1 (PDF 256 kb)

References

  1. Akiyama Y, Hanna WW, Ozias-Akins P (2005) High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome. Theor Appl Genet 111:1042–1051.  https://doi.org/10.1007/s00122-005-0020-5 CrossRefPubMedGoogle Scholar
  2. Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:95–203.  https://doi.org/10.1016/j.nbt.2008.12.009 CrossRefGoogle Scholar
  3. Aparicio A (1994) Karyological studies in Hieracium baeticum (Asteraceae) from the “Parque Natural de la Sierra de Grazalema” (Southern Spain). Fl Medit 4:25–34Google Scholar
  4. Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca RatonGoogle Scholar
  5. Belyayev A (2014) Bursts of transposable elements as an evolutionary driving force. J Evol Biol 27:2573–2584.  https://doi.org/10.1111/jeb.12513 CrossRefPubMedGoogle Scholar
  6. Belyayev A, Raskina O, Nevo E (2001) Chromosomal distribution of reverse transcriptase containing retroelements in two Triticeae species. Chromosome Res 9:129–136CrossRefPubMedGoogle Scholar
  7. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 27:573–580CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420.  https://doi.org/10.1007/s10577-015-9499-z CrossRefPubMedGoogle Scholar
  9. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220.  https://doi.org/10.1038/371215a0 CrossRefPubMedGoogle Scholar
  10. Chrtek J Jr, Mráz P, Severa M (2004) Chromosome numbers in selected species of Hieracium s.str. (Hieracium subgen. Hieracium) in the Western Carpathians. Preslia 76:119–139Google Scholar
  11. Chrtek J Jr, Zahradníček J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot (Oxford) 104:161–178.  https://doi.org/10.1093/aob/mcp107 CrossRefGoogle Scholar
  12. Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR (2015) Genomic repeat abundances contain phylogenetic signal. Syst Biol 64:112–126.  https://doi.org/10.1093/sysbio/syu080 CrossRefPubMedGoogle Scholar
  13. Emadzade K, Jang T-S, Macas J, Kovařík A, Novák P, Parker J, Weiss-Schneeweiss H (2014) Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann Bot (Oxford) 114:1597–1608.  https://doi.org/10.1093/aob/mcu178 CrossRefGoogle Scholar
  14. Fehrer J, Gemeinholzer B, Chrtek J Jr, Bräutigam S (2007) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molec Phylogen Evol 42:347–361.  https://doi.org/10.1016/j.ympev.2006.07.004 CrossRefGoogle Scholar
  15. Fehrer J, Krak K, Chrtek J (2009) Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol Biol 9:239.  https://doi.org/10.1186/1471-2148-9-239 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7:e1000234.  https://doi.org/10.1371/journal.pbio.1000234 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Garrido-Ramos MA (2015) SatDNA in plants: more than just rubbish. Cytogenet Genome Res 146:153–170.  https://doi.org/10.1159/000437008 CrossRefPubMedGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis suite. Nucl Acids Symp Ser 41:95–98Google Scholar
  19. Hand ML, Vít P, Krahulcová A, Johnson SD, Oelkers K, Siddons H, Chrtek J Jr, Fehrer J, Koltunow AMG (2015) Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Heredity 114:17–26.  https://doi.org/10.1038/hdy.2014.61 CrossRefPubMedGoogle Scholar
  20. Hemleben V, Kovařík A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289.  https://doi.org/10.1017/S147720000700240X CrossRefGoogle Scholar
  21. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102.  https://doi.org/10.1126/science.1062939 CrossRefPubMedGoogle Scholar
  22. Ilnicki T, Hasterok R, Szeląg Z (2010) Cytogenetic analysis of Hieracium transylvanicum (Asteraceae). Caryologia 63:192–196CrossRefGoogle Scholar
  23. Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Pl Molec Biol 27:853–862CrossRefGoogle Scholar
  24. Kloc A, Martienssen R (2008) RNAi, heterochromatin and the cell cycle. Trends Genet 24:511–517.  https://doi.org/10.1016/j.tig.2008.08.002 CrossRefPubMedGoogle Scholar
  25. Krak K, Caklová P, Chrtek J, Fehrer J (2013) Reconstruction of phylogenetic relationships in a highly reticulate group with deep coalescence and recent speciation. Heredity 110:138–151.  https://doi.org/10.1038/hdy.2012.100 CrossRefPubMedGoogle Scholar
  26. Lermontova I, Sandmann M, Mascher M, Schmit AC, Chabouté ME (2015) Centromeric chromatin and its dynamics in plants. Pl J 83:4–17.  https://doi.org/10.1111/tpj.12875 CrossRefGoogle Scholar
  27. Lima de Faría A (1980) Classification of genes, rearrangements and chromosomes according to the chromosome field. Hereditas 93:1–46CrossRefPubMedGoogle Scholar
  28. Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Pl J 28:689–697CrossRefGoogle Scholar
  29. Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B (2011) Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia. PLoS ONE 6:e27335.  https://doi.org/10.1371/journal.pone.0027335 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Martienssen RA (2003) Maintenance of heterochromatin by RNA interference of tandem repeats. Nat Genet 35:213–214.  https://doi.org/10.1038/ng1252 CrossRefPubMedGoogle Scholar
  31. Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinf 12:164–171.  https://doi.org/10.1016/j.gpb.2014.07.003 CrossRefGoogle Scholar
  32. Mráz P, Chrtek J, Fehrer J (2011) Interspecific hybridization in the genus Hieracium s.str.—evidence for bidirectional gene flow and spontaneous allopolyploidization. Pl Syst Evol 293:237–245.  https://doi.org/10.1007/s00606-011-0441-3 CrossRefGoogle Scholar
  33. Noe L, Kucherov G (2005) YASS: enhancing the sensitivity of DNA similarity search. Nucl Acids Res 33:W540–W543CrossRefPubMedPubMedCentralGoogle Scholar
  34. Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinf 11:378.  https://doi.org/10.1186/1471-2105-11-378 CrossRefGoogle Scholar
  35. Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793.  https://doi.org/10.1093/bioinformatics/btt054 CrossRefPubMedGoogle Scholar
  36. Okada T, Ito K, Johnson SD, Oelkers K, Suzuki G, Houben A, Mukai Y, Koltunow AM (2011) Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts. Pl Physiol 157:1327–1341.  https://doi.org/10.1104/pp.111.181164 CrossRefGoogle Scholar
  37. Pijnacker LP, Ferwerda MA (1984) Giemsa C-banding of potato chromosomes. Canad J Genet Cytol 26:415–419CrossRefGoogle Scholar
  38. Raskina O, Barber J, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357.  https://doi.org/10.1159/000121084 CrossRefPubMedGoogle Scholar
  39. Raskina O, Brodsky L, Belyayev A (2011) Tandem repeats on an eco-geographical scale: outcomes from the genome of Aegilops speltoides. Chromosome Res 19:607–623.  https://doi.org/10.1007/s10577-011-9220-9 CrossRefPubMedGoogle Scholar
  40. Reeves A (2001) MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:439–443CrossRefPubMedGoogle Scholar
  41. Rozen S, Skaletsky HJ (1998) Primer3. Code. Available at: http://www-genome.wi.mit.edu/genome_software/other/primer3.html
  42. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Springer, New YorkGoogle Scholar
  43. Vašut RJ, Vijverberg K, van Dijk PJ, de Jong H (2014) Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region. Genome 57:609–620.  https://doi.org/10.1139/gen-2014-0143 CrossRefPubMedGoogle Scholar
  44. Viciani D, Fiorini G, Gonnelli V, Gottschlich G (2013) Karyological and morphological investigations on a Hieracium putatively endemic to the National Park “Foreste Casentinesi, M. Falterona, Campigna” (northern Apennines, central Italy). Caryologia 66:154–161CrossRefGoogle Scholar
  45. Wei KH-C, Grenier JK, Barbash DA, Clark AG (2014) Correlated variation and population differentiation in satDNA abundance among lines of Drosophila melanogaster. Proc Natl Acad Sci USA 111:18793–18798.  https://doi.org/10.1073/pnas.1421951112 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zahn KH (1921–1923) Hieracium. In: Engler A (ed) Das Pflanzenreich 75, 76, 77, 80, 82 (IV/280). Wilhelm Engelmann, LeipzigGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
  2. 2.Herbarium and Department of BotanyCharles UniversityPragueCzech Republic

Personalised recommendations