Advertisement

Plant Systematics and Evolution

, Volume 304, Issue 3, pp 295–312 | Cite as

An overlooked hybrid between the two diploid Chenopodium species in Central Europe determined by microsatellite and morphological analysis

  • Eva Hodková
  • Bohumil Mandák
Original Article

Abstract

The presence and extent of hybridization within the Chenopodium album aggregate (Amaranthaceae) is still unclear. Although many hybrid combinations have been described, their existence in the field has never been systematically studied and verified. The main aim of this study was to ascertain the extent of interspecific hybridization between the diploid species C. ficifolium and C. suecicum using highly variable nuclear microsatellite markers. Due to the absence of such kind of molecular markers for the whole C. album group, we divided the analysis into two steps: (1) Eleven microsatellite loci designed for the closely related species C. quinoa were cross-amplified in five Eurasian species of the C. album diploid–polyploid complex, i.e. C. album s.s. (6x), C. striatiforme (4x), C. strictum (4x), C. ficifolium (2x) and C. suecicum (2x); (2) For the detection of interspecific hybridization between C. ficifolium and C. suecicum, we sampled 480 individuals from five localities in Central Europe. We also investigated morphological differences between the parental taxa and their hybrid and devised a key for their determination. Analysis of variation in microsatellite loci using Bayesian methods, PCoA and Neighbour-joining tree identified 32 F1 hybrids. These F1 hybrids, described here as C. paradoxum Mandák, formed a cluster between well-differentiated parental species, combining the morphological characters of both their parents. Moreover, genetic analyses also recognized several F2 or backcross hybrids, whose delimitation, mainly from C. suecicum and F1 hybrids, based on morphological characters, is problematic.

Keywords

Bayesian analyses Chenopodium Cross-amplification Determination key Hybridization Microsatellite New nothospecies 

Notes

Acknowledgements

We would like to thank Dagmar Boltíková, Petr Vít, Jan Machač and Pavel Trávníček for their help in the laboratory and field. Fred Rooks is thanked for helping with the language of the manuscript. We also would like to thank Pertti Uotila and Jindřich Chrtek for their discussion concerning nothospecies description.

Funding

This study was supported by the Grant Agency of the Czech Republic (13-02290S) and as part of long-term research development project RVO 67985939.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors comply will all rules of the journal following the COPE guidelines; all authors have contributed and approved the final manuscript.

Supplementary material

606_2017_1477_MOESM1_ESM.pdf (217 kb)
Supplementary material 1 (PDF 216 kb)
606_2017_1477_MOESM2_ESM.pdf (174 kb)
Supplementary material 2 (PDF 173 kb)
606_2017_1477_MOESM3_ESM.pdf (179 kb)
Supplementary material 3 (PDF 178 kb)
606_2017_1477_MOESM4_ESM.pdf (189 kb)
Supplementary material 4 (PDF 189 kb)
606_2017_1477_MOESM5_ESM.pdf (169 kb)
Supplementary material 5 (PDF 169 kb)
606_2017_1477_MOESM6_ESM.pdf (169 kb)
Supplementary material 6 (PDF 168 kb)

References

  1. Abbott RJ (1992) Plant invasions, interspecific hybridisation and the evolution of new plant taxa. Trends Ecol Evol 7:401–405.  https://doi.org/10.1016/0169-5347(92)90020-C CrossRefPubMedGoogle Scholar
  2. Abbott RJ, Albach D, Ansell S, Arntzen JW, Baird SJ et al (2013) Hybridization and speciation. J Evol Biol 26:229–246.  https://doi.org/10.1111/j.1420-9101.2012.02599.x CrossRefPubMedGoogle Scholar
  3. Aellen P (1960) Chenopodium. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa, vol. 3(2), 2nd edn. Parey, BerlinGoogle Scholar
  4. Aellen P (1972) Das vorkommen einer neuen hybride von Chenopodium ficifolium Sm. x Chenopodium viride L. (Chenopodium x gruellii Aellen hybr. nov.) in der ČSSR. Acta Mus Morav 57:167–170Google Scholar
  5. Aellen P, Just T (1943) Key Synopsis of the American Species of the Genus Chenopodium L. Amer Midl Naturalist 30:47–76.  https://doi.org/10.2307/2421263 CrossRefGoogle Scholar
  6. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  7. Blom C (1961) Bidrag till kännedomen om Sveriges adventiv och ruderatflora V. Acta Horti Gotob 24:61–133Google Scholar
  8. Clemants S, Mosyakin S (2003) Chenopodiaceae. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, 4th edn. Oxford University Press, Oxford, pp 258–404Google Scholar
  9. Cole MJ (1957) Variation and interspecific relationships of Chenopodium album L. in Britain. PhD Thesis, University of Southampton, United KingdomGoogle Scholar
  10. Cole MJ (1961) Interspecific relationships and intraspecific variation of Chenopodium album L. in Britain. I. The taxonomic delimitation of the species. Watsonia 5:47–58Google Scholar
  11. Dostálek J, Hejný S, Husák Š, Schwarzová T, Dvořák F (1990) Chenopodium L., merlík. In: Hejný S, Slavík B (eds) Květena České republiky 2. Academia, Praha, pp 223–265Google Scholar
  12. Dvořák F (1990) Study of Chenopodium interjectum J. Murr, Ch. mixtifolium J. Murr and Ch. laciniatum J. Murr. Feddes Repert 101:347–371.  https://doi.org/10.1002/fedr.19901010706 Google Scholar
  13. Dvořák F (1992a) Study of Chenopodium purpurascens B. de Juss. ex Jacq. and on some related taxa. Feddes Repert 103:153–173.  https://doi.org/10.1002/fedr.19921030302 Google Scholar
  14. Dvořák F (1992b) Study of Chenopodium subopulifolium J. Murr emend. D. Feddes Repert 103:49–69.  https://doi.org/10.1002/fedr.19921030109 Google Scholar
  15. Dvořák F (1993) Relationships and diagnostic characters of Chenopodium striatiforme J. Murr, C. striatum (Krašan) J. Murr and C. strictum Roth. Feddes Repert 104:439–449.  https://doi.org/10.1002/fedr.19931040704 Google Scholar
  16. Dvořák F (1994) Study of some species subsumed under Chenopodium probstii A. and on C. purpurascens B. de Juss. ex Jacq. Feddes Repert 105:113–139.  https://doi.org/10.1002/fedr.19941050302 Google Scholar
  17. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604.  https://doi.org/10.1111/j.1471-8286.2006.01380.x CrossRefGoogle Scholar
  18. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Evol Syst 24:217–242.  https://doi.org/10.1146/annurev.es.24.110193.001245 CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  20. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  21. Grant PR, Grant BR (2014) Evolutionary biology: speciation undone. Nature 507:178–179.  https://doi.org/10.1038/507178b CrossRefPubMedGoogle Scholar
  22. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  23. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  24. Jacobsen SE (2011) The situation for Quinoa and its production in southern Bolivia: from economic success to environmental disaster. J Agron Crop Sci 197:390–399.  https://doi.org/10.1111/j.1439-037X.2011.00475.x CrossRefGoogle Scholar
  25. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806.  https://doi.org/10.1093/bioinformatics/btm233 CrossRefPubMedGoogle Scholar
  26. Jalas J, Suominen J (1980) Atlas Florae Europaeae distribution of vascular plants in Europe 5. Chenopodiaceae to Basellaceae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, HelsinkiGoogle Scholar
  27. Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51CrossRefPubMedGoogle Scholar
  28. Jüttersonke B, Arlt K (1989) Experimentelle Untersuchungen über die infraspezifische Struktur von Chenopodium album L. sowie Untersuchungen an Chenopodium suecicum. J Murr Feddes Repert 100:1–63Google Scholar
  29. Krak K, Vít P, Belyayev A, Douda J, Hreusová L, Mandák B (2016) Allopolyploid origin of Chenopodium album s. str. (Chenopodiaceae): a molecular and cytogenetic insight. PLoS One 11:e0161063.  https://doi.org/10.1371/journal.pone.0161063 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot (Oxford) 100:505–526.  https://doi.org/10.1093/aob/mcm144 CrossRefGoogle Scholar
  31. Mallet J (2007) Hybrid speciation. Nature 446:279–283.  https://doi.org/10.1038/nature05706 CrossRefPubMedGoogle Scholar
  32. Mandák B, Pyšek P, Lysák M, Suda J, Krahulcová A, Bímová K (2003) Variation in DNA-ploidy levels of Reynoutria taxa in the Czech Republic. Ann Bot (Oxford) 92:265–272.  https://doi.org/10.1093/aob/mcg141 CrossRefGoogle Scholar
  33. Mandák B, Trávníček P, Paštová L, Kořínková D (2012) Is hybridization involved in the evolution of the Chenopodium album aggregate? An analysis based on chromosome counts and genome size estimation. Flora 207:530–540.  https://doi.org/10.1016/j.flora.2012.03.010 CrossRefGoogle Scholar
  34. Mandák B, Krak K, Vít P, Pavlíková Z, Lomonosova MN, Habibi F, Lei W, Jellen EN, Douda J (2016) How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect Pl Ecol Evol Syst 23:18–32.  https://doi.org/10.1016/j.ppees.2016.09.004 CrossRefGoogle Scholar
  35. Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in Quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630.  https://doi.org/10.2135/cropsci2004.0295 CrossRefGoogle Scholar
  36. Murr J (1896) Über einige kritische Chenopodium-Formen. Deutsche Bot Monatsschr 14:32–37Google Scholar
  37. Murr J (1901) Zur Chenopodium-Frage. II. Deutsche Bot Monatsschr 19:37–40Google Scholar
  38. Nei M (1973) The theory and estimation of genetic distance. In: Morton NE (ed) Genetics of population structure. University of Hawai Press, Honolulu, pp 45–54Google Scholar
  39. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:1289–1299.  https://doi.org/10.1371/journal.pbio.0030196 CrossRefGoogle Scholar
  40. Olšavská K, Perný M, Španiel S, Šingliarová B (2012) Nuclear DNA content variation among perennial taxa of the genus Cyanus (Asteraceae) in Central Europe and adjacent areas. Pl Syst Evol 298:1463–1482.  https://doi.org/10.1007/s00606-012-0650-4 CrossRefGoogle Scholar
  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  42. Pritchard JK, Wen X, Falush D (2009) STRUCTURE ver. 2.3.4. University of Chicago, Chicago. Available at: http://pritch.bsd.uchicago.edu/. Accessed 25 Apr 2015
  43. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/
  44. Rahiminejad MR (1995) Taxonomy and biosystematics of the Chenopodium album aggregate. PhD Thesis, University of Leicester, LeicesterGoogle Scholar
  45. Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison R (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 70–109Google Scholar
  46. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Molec Ecol Notes 4:137–138.  https://doi.org/10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  47. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572.  https://doi.org/10.1111/j.1471-8286.2006.01225.x CrossRefGoogle Scholar
  48. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annual Rev Pl Biol 60:561–588.  https://doi.org/10.1146/annurev.arplant.043008.092039 CrossRefGoogle Scholar
  49. Štorchová H, Hrdličková R, Chrtek J, Tetera M, Fitze D, Fehrer J (2000) An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49:79–84.  https://doi.org/10.2307/1223934 CrossRefGoogle Scholar
  50. Štorchová H, Drabešová J, Cháb D, Kolář J, Jellen EN (2015) The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genet Resources Crop Evol 62:913–925.  https://doi.org/10.1007/s10722-014-0200-8 CrossRefGoogle Scholar
  51. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323–1335.  https://doi.org/10.1093/aob/mcm218 CrossRefGoogle Scholar
  52. Suda J, Trávníček P, Mandák B, Berchová-Bímová K (2010) Genome size as a marker for identifying the invasive alien taxa in Fallopia section Reynoutria. Preslia 82:97–106Google Scholar
  53. Thomas CD (2015) Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol Evol 30:448–455.  https://doi.org/10.1016/j.tree.2015.05.009 CrossRefPubMedGoogle Scholar
  54. Uotila P (1977) Chenopodium strictum subsp. striatiforme in the Baltic Sea area. Ann Bot Fenn 14:199–205Google Scholar
  55. Uotila P (1978) Variation, distribution and taxonomy of Chenopodium suecicum and C. album in N Europe. Acta Bot Fenn 108:1–35Google Scholar
  56. Uotila P (1997) Chenopodium L. In: Rechinger KH (ed) Flora Iranica, 172nd edn. Akademische Druck-u. Verlagsanstalt, Graz, pp 24–59Google Scholar
  57. Uotila P (2001a) Chenopodium L. In: Jonsell B (ed) Flora Nordica 2. The Royal Swedish Academy of Sciences, Stockholm, pp 4–31Google Scholar
  58. Uotila P (2001b) Taxonomic and nomenclatural notes on Chenopodium (Chenopodiaceae) for Flora Nordica. Ann Bot Fenn 38:95–97Google Scholar
  59. Vít P, Krak K, Trávníček P, Douda J, Lomonosova MN, Mandák B (2016) Genome size stability across Eurasian Chenopodium species (Amaranthaceae). Bot J Linn Soc 182:637–649.  https://doi.org/10.1111/boj.12474 CrossRefGoogle Scholar
  60. Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN (2015) Chenopodium polyploidy inferred from salt overly sensitive (SOS1) data. Amer J Bot 102:533–543.  https://doi.org/10.3732/ajb.1400344 CrossRefGoogle Scholar
  61. Wilson H (1980) Artificial hybridization among species of Chenopodium sect. Chenopodium. Syst Bot 5:253–263.  https://doi.org/10.2307/2418372 CrossRefGoogle Scholar
  62. Wilson H, Manhart J (1993) Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor Appl Genet 86:642–648.  https://doi.org/10.1007/BF00838721 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6Czech Republic
  2. 2.Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic

Personalised recommendations