Plant Systematics and Evolution

, Volume 304, Issue 1, pp 111–121 | Cite as

Terpene synthase genes in Melaleuca alternifolia: comparative analysis of lineage-specific subfamily variation within Myrtaceae

  • Jed Calvert
  • Abdul Baten
  • Jakob Butler
  • Bronwyn Barkla
  • Mervyn ShepherdEmail author
Original Article


Terpenes are a multifarious group of secondary compounds present throughout the living world that function primarily in defence, or otherwise in regulating interactions between an organism and its environment. Terpene synthases (TPS) are a mid-sized gene family whose diversity and make-up reflects a plant’s ecological requirements and unique adaptive history. Here we catalogue TPS in Melaleuca alternifolia and examine lineage-specific expansion in TPS relative to other sequenced Myrtaceae. Overall, far fewer (37) putative TPS genes were identified in M. alternifolia compared with Eucalyptus grandis (113) and E. globulus (106). The number of genes in clade TPS-b1 (12), which encode enzymes that produce cyclic monoterpenes, was proportionally larger in M. alternifolia than in any other well-characterised plant. Relative to E. grandis, the isoprene-/ocimene-producing TPS-b2 clade in M. alternifolia tended to be proportionally smaller. This suggested there may be lineage-specific subfamily change in Melaleuca relative to other sequenced Myrtaceae, perhaps as a consequence of its semi-aquatic evolutionary history.


Corymbia Eucalyptus Monoterpene Tea tree 



The authors wish to acknowledge the assistance of R. Wood, A. Kawamata and J. Bloomfield and T. Rhodes for his help in the laboratory. Jed Calvert would also like to thank Shirali, for her constant support and supply of fresh perspectives. This work was supported by the Australian Research Council (Grant No. DP140102552).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2017_1454_MOESM1_ESM.pdf (110 kb)
Supplementary material 1 (PDF 109 kb)
606_2017_1454_MOESM2_ESM.pdf (39 kb)
Supplementary material 2 (PDF 39 kb)
606_2017_1454_MOESM3_ESM.pdf (90 kb)
Supplementary material 3 (PDF 90 kb)
606_2017_1454_MOESM4_ESM.pdf (188 kb)
Supplementary material 4 (PDF 187 kb)
606_2017_1454_MOESM5_ESM.pdf (180 kb)
Supplementary material 5 (PDF 179 kb)
606_2017_1454_MOESM6_ESM.pdf (552 kb)
Supplementary material 6 (PDF 552 kb)
606_2017_1454_MOESM7_ESM.fasta (185 kb)
Supplementary material 7 (FASTA 185 kb)
606_2017_1454_MOESM8_ESM.pdf (781 kb)
Supplementary material 8 (PDF 780 kb)
606_2017_1454_MOESM9_ESM.fasta (17 kb)
Supplementary material 9 (FASTA 17 kb)
606_2017_1454_MOESM10_ESM.pdf (228 kb)
Supplementary material 10 (PDF 228 kb)
606_2017_1454_MOESM11_ESM.pdf (417 kb)
Supplementary material 11 (PDF 417 kb)
606_2017_1454_MOESM12_ESM.tree (5 kb)
Supplementary material 12 (TREE 4 kb)
606_2017_1454_MOESM13_ESM.tree (7 kb)
Supplementary material 13 (TREE 6 kb)
606_2017_1454_MOESM14_ESM.pdf (106 kb)
Supplementary material 14 (PDF 105 kb)


  1. Andrews S (2015) FastQC: A quality control tool for high throughput sequence data. Available at: Accessed 14 May 2016
  2. Baker G (1999) Tea tree breeding. In: Southwell I, Lowe R (eds) Tea tree: the genus Melaleuca. Harwood Academic Publishers, Amsterdam, pp 135–154Google Scholar
  3. Barlow BA (1988) Patterns of differentiation in tropical species of Melaleuca L. (Myrtaceae), pp. 239–247 in The ecology of Australia’s wet tropics: proceedings of a symposium held at the University of Queensland. In: R. L. Kitching. Surrey Beatty & Sons for Ecol Soc Aust procite:01edfb08-aef9-4a6f-bf47-0127cb4ffcdeGoogle Scholar
  4. Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Schnitzler JP (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Pl J 51:485–499. doi: 10.1111/j.1365-313X.2007.03157.x CrossRefGoogle Scholar
  5. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Pl Cell 16:1667–1678. doi: 10.1105/tpc.021345 CrossRefGoogle Scholar
  6. Bruce BD (2001) The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. BBA Molec Cell Res 1541:2–21. doi: 10.1016/S0167-4889(01)00149-5 Google Scholar
  7. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Pl Biol 4:1. doi: 10.1186/1471-2229-4-10 CrossRefGoogle Scholar
  8. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196. doi: 10.1101/gr.6743907 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Pl J 66:212–229. doi: 10.1111/j.1365-313X.2011.04520.x CrossRefGoogle Scholar
  10. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucl Acids Res 36(Web Server issue):W465–W469. doi: 10.1093/nar/gkn180 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984. doi: 10.1110/ps.8.5.978 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefPubMedGoogle Scholar
  13. Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, Potts B, Myburg AA (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508. doi: 10.1007/s11295-012-0491-x CrossRefGoogle Scholar
  14. Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Pl Physiol 148:993–1003. doi: 10.1104/pp.108.122457 CrossRefGoogle Scholar
  15. Herde M, Gärtner K, Köllner TG, Fode B, Boland W, Gershenzon J, Tholl D (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Pl Cell 20:1152–1168. doi: 10.1105/tpc.106.049478 CrossRefGoogle Scholar
  16. Keszei A, Hassan Y, Foley WJ (2010a) A biochemical interpretation of terpene chemotypes in Melaleuca alternifolia. J Chem Ecol 36:652–661. doi: 10.1007/s10886-010-9798-y CrossRefPubMedGoogle Scholar
  17. Keszei A, Webb H, Kulheim C, Foley W (2010b) Genetic tools for improving tea tree oils. Rural Industries Research and Development Corporation, BartonGoogle Scholar
  18. Külheim C, Padovan A, Hefer C, Krause ST, Köllner TG, Myburg AA, Foley WJ (2015) The Eucalyptus terpene synthase gene family. BMC Genomics 16:1. doi: 10.1186/s12864-015-1598-x CrossRefGoogle Scholar
  19. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059. doi: 10.1101/gr.174302 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Pl J 53:661–673. doi: 10.1111/j.1365-313X.2007.03326.x CrossRefGoogle Scholar
  21. Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, Freeling M (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Pl Physiol 148:1772–1781. doi: 10.1104/pp.108.124867 CrossRefGoogle Scholar
  22. Morcia C, Malnati M, Terzi V (2012) In-vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit Contam A 29:415–422. doi: 10.1080/19440049.2011.643458 Google Scholar
  23. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Goodstein DM (2014) The genome of Eucalyptus grandis. Nature 510:356–362. doi: 10.1038/nature13308 CrossRefPubMedGoogle Scholar
  24. Navia-Giné WG, Yuan JS, Mauromoustakos A, Murphy JB, Chen F, Korth KL (2009) Medicago truncatula (E)-β-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene. Pl Physiol Biochem 47:416–425. doi: 10.1016/j.plaphy.2009.01.008 CrossRefGoogle Scholar
  25. Penuelas J, Llusia J, Asensio D, Munné-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Pl Cell Environm 28:278–286. doi: 10.1111/j.1365-3040.2004.01250.x CrossRefGoogle Scholar
  26. Pierce BA (2012) Genetics: a conceptual approach, 4th edn. WH Freeman/Macmillan, SydneyGoogle Scholar
  27. Rambaut A (2014) Figtree: molecular evolution, phylogenetics and epidemiology. Available at: Accessed 2 May 2017
  28. Rasoul MAA, Marei GIK, Abdelgaleil SA (2012) Evaluation of antibacterial properties and biochemical effects of monoterpenes on plant pathogenic bacteria. African J Microbiol Res 6:3667–3672. doi: 10.5897/AJMR12.118 Google Scholar
  29. Schein AI, Kissinger JC, Ungar LH (2001) Chloroplast transit peptide prediction: a peek inside the black box. Nucl Acids Res 29:e82–e82. doi: 10.1093/nar/29.16.e82 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Pl Physiol 137:700–712. doi: 10.1104/pp.104.054445 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sharkey TD, Gray DW, Pell HK, Breneman SR, Topper L (2013) Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the tps-b terpene synthase family. Evolution 67:1026–1040. doi: 10.1111/evo.12013 CrossRefPubMedGoogle Scholar
  32. Shelton D, Aitken K, Doimo L, Leach D, Baverstock P, Henry R (2002) Genetic control of monoterpene composition in the essential oil of Melaleuca alternifolia (Cheel). Theor Appl Genet 105:377–383. doi: 10.1007/s00122-002-0948-7 CrossRefPubMedGoogle Scholar
  33. Shelton D, Leach D, Henry R (2004a) Isopentenyl pyrophosphate isomerases from Melaleuca alternifolia (Cheel) and their role in isoprenoid biosynthesis. J Hortic Sci Biotech 79:289–292. doi: 10.1080/14620316.2004.11511762 CrossRefGoogle Scholar
  34. Shelton D, Zabaras D, Chohan S, Wyllie SG, Baverstock P, Leach D, Henry R (2004b) Isolation and partial characterisation of a putative monoterpene synthase from Melaleuca alternifolia. Pl Physiol Biochem 42:875–882. doi: 10.1016/j.plaphy.2004.10.010 CrossRefGoogle Scholar
  35. Shepherd M, Ablett G, Wood R, Raymond C, Rose T (2015) Ecotype variation in early growth, coppicing, and shoot architecture of tea tree (Melaleuca alternifolia). Industr Crop Prod 76:844–856. doi: 10.1016/j.indcrop.2015.07.076 CrossRefGoogle Scholar
  36. Shimoda T, Nishihara M, Ozawa R, Takabayashi J, Arimura GI (2012) The effect of genetically enriched (E)-β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia. New Phytol 193:1009–1021. doi: 10.1111/j.1469-8137.2011.04018.x CrossRefPubMedGoogle Scholar
  37. Silva SM, Abe SY, Murakami FS, Frensch G, Marques FA, Nakashima T (2011) Essential oils from different plant parts of Eucalyptus cinerea F. Muell. ex Benth.(Myrtaceae) as a source of 1, 8-cineole and their bioactivities. Pharmaceuticals 4:1535–1550. doi: 10.3390/ph4121535 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212.
  39. Soltis P, Soltis D (2003) Applying the bootstrap in phylogeny reconstruction. Statist Sci 18:256–267. doi: 10.1214/ss/1063994980 CrossRefGoogle Scholar
  40. Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis) comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J Biol Chem 273:2078–2089. doi: 10.1074/jbc.273.4.2078 CrossRefPubMedGoogle Scholar
  41. Tao N, Jia L, Zhou H (2014) Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem 153:265–271. doi: 10.1016/j.foodchem.2013.12.070 CrossRefPubMedGoogle Scholar
  42. Thornhill AH, Ho SY, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molec Phylogen Evol 93:29–43. doi: 10.1016/j.ympev.2015.07.007 CrossRefGoogle Scholar
  43. Toyomasu T, Tsukahara M, Kaneko A, Niida R, Mitsuhashi W, Dairi T, Sassa T (2007) Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Proc Natl Acad Sci USA 104:3084–3088. doi: 10.1073/pnas.0608426104 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Schein J (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi: 10.1126/science.1128691 CrossRefPubMedGoogle Scholar
  45. Webb H, Lanfear R, Hamill J, Foley WJ, Külheim C (2013) The yield of essential oils in Melaleuca alternifolia (Myrtaceae) is regulated through transcript abundance of genes in the MEP pathway. PLoS ONE 8:e60631. doi: 10.1371/journal.pone.0060631 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Webb H, Foley WJ, Külheim C (2014) The genetic basis of foliar terpene yield: implications for breeding and profitability of Australian essential oil crops. Pl Biotechnol 31:363–376. doi: 10.5511/plantbiotechnology.14.1009a CrossRefGoogle Scholar
  47. Wilson LJ, Bauer LR, Walter GH (1996) ‘Phytophagous’ thrips are facultative predators of twospotted spider mites (Acari: Tetranychidae) on cotton in Australia. Bull Entomol Res 86:297–305. doi: 10.1017/S0007485300052597 CrossRefGoogle Scholar
  48. Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, Ikeda H (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA 112:857–862. doi: 10.1073/pnas.1422108112 CrossRefPubMedGoogle Scholar
  49. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annual Rev Pl Biol 59:225–251. doi: 10.1146/annurev.arplant.59.032607.092804 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Southern Cross Plant ScienceSouthern Cross UniversityLismoreAustralia
  2. 2.School of Biological ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations