Plant Systematics and Evolution

, Volume 303, Issue 8, pp 1061–1079 | Cite as

Gene expression variation in natural populations of hexaploid and allododecaploid Spartina species (Poaceae)

  • Julie Ferreira de Carvalho
  • Julien Boutte
  • Pierre Bourdaud
  • Houda Chelaifa
  • Kader Ainouche
  • Armel Salmon
  • Malika Ainouche
Original Article
Part of the following topical collections:
  1. Polyploidy in Shallow and Deep Evolutionary Times


Allopolyploidy is a peculiar process entailing the cohabitation of two (or more) divergent genomes. Consequences on plant genomes are varied and can utlimately alter gene expression and regulatory interactions. Most studies have explored polyploid expression evolution in experimental controlled conditions. Here, we analyzed global gene expression variation in natural populations of the Spartina polyploid complex including hexaploid parental species (S. maritima and S. alterniflora), two F1 hybrids (S. × townsendii and S. × neyrautii) and the allododecaploid S. anglica. In situ sampling and quantitative PCR were performed for comparing global expression of candidate genes involved in responses to abiotic stresses, lignin and cellulose metabolisms between five Spartina taxa. Illumina sequencing datasets and dedicated bioinformatic pipelines were employed to explore sequence heterogeneity in these highly duplicated genomes. Levels of gene expression were significantly higher in S. alterniflora (compared to the other hexaploid parent S. maritima) for seven of the analyzed genes. Effects of both hybridization and polyploidization are detected and consistent with previous global transcriptome analyses performed on Spartina plants grown in controlled conditions. Duplicated copies present in the hybrids and the allododecaploid were successfully assigned to either one of the parental genomes. Phylogenetic analyses identified for each of the parental hexaploid species, the presence of two distinct clades including two or more expressed copies. We provide here a comprehensive gene expression study based on individuals sampled in their natural habitat and detected the superimposed effect of environmental heterogeneity, hybridization and allopolyploidy.


Allopolyploidy Gene expression Haplotype detection Hybridization Quantitative PCR Spartina 



This work was supported by the International Associated Laboratory “Ecological Genomics of Polyploidy” supported by CNRS (INEE, UMR CNRS 6553 Ecobio), University of Rennes 1, Iowa State University (Ames, USA), and the Partner University Funds (to M. A., A. S.). The analyses benefited from the Molecular Ecology (UMR CNRS 6553 Ecobio) and Genouest (Bioinformatics) facilities. Authors J. Ferreira de Carvalho benefited from a PhD grant (ARED EVOSPART) from the Regional Council of Brittany and J. Boutte from a PhD scholarship from the University of Rennes 1. We thank two anonymous reviewers for helpful comments and suggestions on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This research does not involve human participants or animals.

Supplementary material

606_2017_1446_MOESM1_ESM.pdf (108 kb)
Online Resource 1 Primer sequences of the 13 target genes and three housekeeping genes used for quantitative PCR and cloning of the Metal tolerance protein gene (PDF 107 kb)
606_2017_1446_MOESM2_ESM.pdf (102 kb)
Online Resource 2 Functions, annotations and number of loci in Sorghum bicolor for the candidate genes studied in Spartina natural populations (PDF 102 kb)
606_2017_1446_MOESM3_ESM.fasta (5 kb)
Online Resource 3 Alignment matrix of nucleotide sequences cloned and sequenced in S. maritima from the transcript coding a Metal tolerance protein (FASTA 4 kb)
606_2017_1446_MOESM4_ESM.fasta (4 kb)
Online Resource 4 Alignment matrix of haplotype sequences found in S. alterniflora, S. maritima and S. x townsendii for the Transcriptional adapter ADA2 gene (FASTA 3 kb)
606_2017_1446_MOESM5_ESM.fasta (11 kb)
Online Resource 5 Alignment matrix of haplotype sequences found in S. alterniflora, S. maritima and orthologous sequences in Setaria italica, Zea mays and Sorghum bicolor for the hexokinase 5 gene (FASTA 10 kb)


  1. Adams KL (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. J Heredity 98:136–141. doi: 10.1093/jhered/esl061 CrossRefGoogle Scholar
  2. Adams J, Bate G, O’Callaghan M (1999) Primary producers. In: Allanson B, Baird D (eds) Estuaries of South Africa. Cambridge University Press, Cambridge, pp 91–118CrossRefGoogle Scholar
  3. Ainouche ML, Baumel A, Salmon A, Yannic G (2004) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172. doi: 10.1046/j.1469-8137.2003.00926.x CrossRefGoogle Scholar
  4. Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien M-A, Fukunaga K, Ricou M, Misset M-T (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invas 11:1159–1173. doi: 10.1007/s10530-008-9383-2 CrossRefGoogle Scholar
  5. Ainouche M, Chelaifa H, Ferreira de Carvalho J, Bellot S, Ainouche A, Salmon A (2012) Polyploid evolution in Spartina: dealing with highly redundant hybrid genomes. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin, pp 225–243CrossRefGoogle Scholar
  6. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Pl J 46:861–879. doi: 10.1111/j.1365-313X.2006.02746.x CrossRefGoogle Scholar
  8. Ayres DR, Strong DR (2001) Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Amer J Bot 88:1863–1867CrossRefGoogle Scholar
  9. Ayres DR, Smith DL, Zaremba K, Klohr S, Strong D (2004) Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biol Invas 6:221–231. doi: 10.1023/B:BINV.0000022140.07404.b7 CrossRefGoogle Scholar
  10. Baisakh N, Subudhi PK, Parami NP (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. J Pl Sci 170:1141–1149. doi: 10.1016/j.plantsci.2006.02.001 CrossRefGoogle Scholar
  11. Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300. doi: 10.1007/s10142-008-0075-x PubMedCrossRefGoogle Scholar
  12. Bardil A, de Almeida JD, Combes MC, Lashermes P, Bertrand B (2011) Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytol 192:760–774. doi: 10.1111/j.1469-8137.2011.03833.x PubMedCrossRefGoogle Scholar
  13. Barrientos A, Barros MH, Valnot I, Rotig A, Rustin P, Tzagoloff A (2002) Cytochrome oxidase in health and disease. Gene 286:53–63PubMedCrossRefGoogle Scholar
  14. Basu S, Roychoudhury A (2014) Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance. BioMed Res Int 2014:706890. doi: 10.1155/2014/706890 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Molec Ecol 10:1689–1701. doi: 10.1046/j.1365-294X.2001.01299.x CrossRefGoogle Scholar
  16. Baumel A, Ainouche M, Kalendar R, Schulman AH (2002a) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae). Molec Biol Evol 19:1218–1227PubMedCrossRefGoogle Scholar
  17. Baumel A, Ainouche ML, Bayer RJ, Ainouche ML, Misset M-T (2002b) Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Molec Phylogen Evol 22:303–314. doi: 10.1006/mpev.2001.1064 CrossRefGoogle Scholar
  18. Baumel A, Ainouche ML, Misset MT, Gourret J-P, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina × neyrautii re-examined. Pl Syst Evol 237:87–97. doi: 10.1007/s00606-002-0251-8 CrossRefGoogle Scholar
  19. Bortolus A, Carlton JT, Schwindt E (2015) Reimagining South American coasts: unveiling the hidden invasion history of an iconic ecological engineer. Diversity Distrib 21:1267–1283. doi: 10.1111/ddi.12377 CrossRefGoogle Scholar
  20. Boutte J, Aliaga B, Lima O, Ferreira de Carvalho J, Ainouche A, Macas J, Rousseau-Gueutin M, Coriton O, Ainouche M, Salmon A (2015) Haplotype detection from next-generation sequencing in high-ploidy-level species: 45S rDNA gene copies in the hexaploid Spartina maritima. Genes Genomes Genet 6:29–40. doi: 10.1534/g3.115.023242 Google Scholar
  21. Boutte J, Ferreira de Carvalho J, Rousseau-Gueutin M, Poulain J, Da Silva C, Wincker P, Ainouche M, Salmon A (2016) Reference transcriptomes and detection of duplicated copies in hexaploid and allododecaploid Spartina species (Poaceae). Genome Biol Evol 8:3030–3044. doi: 10.1093/gbe/evw209 PubMedCrossRefGoogle Scholar
  22. Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson AH, Soltis PS, Soltis DE (2009) Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103:73–81. doi: 10.1038/hdy.2009.24 PubMedCrossRefGoogle Scholar
  23. Buggs RJA, Zhang L, Miles N, Tate JA, Gao L, Wei W, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE (2011) Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr Biol 21:551–556. doi: 10.1016/j.cub.2011.02.016 PubMedCrossRefGoogle Scholar
  24. Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042. doi: 10.1016/j.marpolbul.2008.08.008 PubMedCrossRefGoogle Scholar
  25. Campos JA, Herrera M, Biurrun I, Loidi J (2004) The role of alien plants in the natural coastal vegetation in central-northern Spain. Biodivers Conservation 13:2275–2293. doi: 10.1023/B:BIOC.0000047902.27442.92 CrossRefGoogle Scholar
  26. Castellanos EM, Figueroa ME, Davy AJ (1994) Nucleation and facilitation in saltmarsh succession: interactions between Spartina maritima and Arthrocnemum perenne. J Ecol 82:239–248. doi: 10.2307/2261292 CrossRefGoogle Scholar
  27. Castillo JM, Mateos-Naranjo E, Nieva FJ, Figueroa E (2008) Plant zonation at salt marshes of the endangered cordgrass Spartina maritima invaded by Spartina densiflora. Hydrobiologia 614:363–371. doi: 10.1007/s10750-008-9520-z CrossRefGoogle Scholar
  28. Chagué V, Just J, Mestiri I, Balzergue S, Tanguy A-M, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B (2010) Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol 187:1181–1194. doi: 10.1111/j.1469-8137.2010.03339.x PubMedCrossRefGoogle Scholar
  29. Chelaifa H, Mahé F, Ainouche M (2010a) Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae). Molec Ecol 19:2050–2063. doi: 10.1111/j.1365-294X.2010.04637.x CrossRefGoogle Scholar
  30. Chelaifa H, Monnier A, Ainouche M (2010b) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174. doi: 10.1111/j.1469-8137.2010.03179.x PubMedCrossRefGoogle Scholar
  31. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annual Rev Pl Biol 58:377–406. doi: 10.1146/annurev.arplant.58.032806.103835 CrossRefGoogle Scholar
  32. Chevalier A (1933) Nouvelles observations sur les Spartina et spécialement sur le Spartina Townsendi. Bull Soc Bot France 80:779–788CrossRefGoogle Scholar
  33. Chevalier A (1953) La distribution géographique et la nomenclature des Spartina des vases salées dans l’Ancien et dans le Nouveau-Monde. Dernière opinion. Rev Int Bot Appl Agric Trop 33:403–408. doi: 10.3406/jatba.1953.6622 Google Scholar
  34. Cifuentes M, Eber F, Lucas M-O, Lode M, Chèvre A-M, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Pl Cell 22:2265–2276. doi: 10.1105/tpc.109.072991 CrossRefGoogle Scholar
  35. Combes M-C, Cenci A, Baraille H, Bertrand B, Lashermes P (2012) Homeologous gene expression in response to growing temperature in a recent allopolyploid (Coffea arabica L.). J Heredity 103:36–46. doi: 10.1093/jhered/esr120 CrossRefGoogle Scholar
  36. Curi GC, Welchen E, Chan RL, Gonzalez DH (2003) Nuclear and mitochondrial genes encoding cytochrome c oxidase subunits respond differently to the same metabolic factors. Pl Physiol Biochem 41:689–693. doi: 10.1016/S0981-9428(03)00093-7 CrossRefGoogle Scholar
  37. Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Pl Cell 11:1253–1266CrossRefGoogle Scholar
  38. Dong S, Adams KL (2011) Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytol 190:1045–1057. doi: 10.1111/j.1469-8137.2011.03650.x PubMedCrossRefGoogle Scholar
  39. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annual Rev Genet 42:443–461. doi: 10.1146/annurev.genet.42.110807.091524 CrossRefGoogle Scholar
  40. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ferreira de Carvalho J, Poulain J, Da Silva C, Wincker P, Michon-Coudouel S, Dheilly A, Naquin D, Boutte J, Salmon A, Ainouche M (2013) Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity 110:181–193. doi: 10.1038/hdy.2012.76 PubMedCrossRefGoogle Scholar
  42. Ferris C, King RA, Gray AJ (1997) Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C.E. Hubbard. Molec Ecol 6:185–187. doi: 10.1046/j.1365-294X.1997.00165.x CrossRefGoogle Scholar
  43. Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193PubMedCrossRefGoogle Scholar
  44. Fortune PM, Schierenbeck KA, Ainouche AK, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species (Poaceae). Molec Phylogen Evol 43:1040–1055. doi: 10.1016/j.ympev.2006.11.018 CrossRefGoogle Scholar
  45. Foucaud J (1897) Un Spartina inédit. Ann Soc Sci Nat Charente-Infér 32:220–222Google Scholar
  46. Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28. doi: 10.1111/j.1469-8137.2009.03089.x PubMedCrossRefGoogle Scholar
  47. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Pl Cell 19:3403–3417. doi: 10.1105/tpc.107.054346 CrossRefGoogle Scholar
  48. Giegé P, Sweetlove LJ, Cognat V, Leaver CJ (2005) Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Pl Cell 17:1497–1512. doi: 10.1105/tpc.104.030254 CrossRefGoogle Scholar
  49. Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Pl Physiol 125:1643–1654CrossRefGoogle Scholar
  50. Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Heredity 96:241–252CrossRefGoogle Scholar
  51. Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol 196:966–971. doi: 10.1111/j.1469-8137.2012.04365.x PubMedCrossRefGoogle Scholar
  52. Groves H, Groves J (1880) Spartina townsendii. Nobis 1:37Google Scholar
  53. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Res 41:95–98Google Scholar
  54. Harrington GN, Bush DR (2003) The bifunctional role of hexokinase in metabolism and glucose signaling. Pl Cell 15:2493–2496. doi: 10.1105/tpc.151130 CrossRefGoogle Scholar
  55. Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659. doi: 10.1016/j.cub.2006.06.071 PubMedCrossRefGoogle Scholar
  56. Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2009) Extreme changes to gene expression associated with homoploid hybrid speciation. Molec Ecol 18:877–889. doi: 10.1111/j.1365-294X.2008.04054.x CrossRefGoogle Scholar
  57. Hervé M (2014) RVAideMemoire: diverse basic statistical and graphical functions. R package version 09-32Google Scholar
  58. Huska D, Leitch IJ, Ferreira de Carvalho J, Leitch AR, Salmon A, Malika A, Kovarik A (2016) Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biol Invas 18:2137–2151. doi: 10.1007/s10530-015-0956-6 CrossRefGoogle Scholar
  59. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. doi: 10.1038/nature09916 PubMedCrossRefGoogle Scholar
  60. Jovet P (1941) Notes systématiques et écologiques sur les Spartines du Sud-Ouest. Bull Soc Bot France 88:115–123CrossRefGoogle Scholar
  61. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi: 10.1093/bioinformatics/bts199 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lai Z, Gross BL, Yizou Andrews J, Riesberg LH (2006) Microarray analysis reveals differential gene expression in hybrid sunflower species. Molec Ecol 15:1213–1227. doi: 10.1111/j.1365-294X.2006.02775.x CrossRefGoogle Scholar
  63. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Rev Pl Physiol 48:251–275. doi: 10.1146/annurev.arplant.48.1.251 CrossRefGoogle Scholar
  64. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Meth 9:357–359. doi: 10.1038/nmeth.1923 CrossRefGoogle Scholar
  65. Lashermes P, Combes M-C, Hueber Y, Severac D, Dereeper A (2014) Genome rearrangements derived from homoeologous recombination following allopolyploidy speciation in coffee. Pl J 78:674–685. doi: 10.1111/tpj.12505 CrossRefGoogle Scholar
  66. Li B, Liao C, Zhang X, Chen H, Wang Q, Chen Z, Gan X, Wu J, Zhao B, Ma Z, Cheng X, Jiang L, Chen J (2009a) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520. doi: 10.1016/j.ecoleng.2008.05.013 CrossRefGoogle Scholar
  67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009b) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2008) Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156:589–600. doi: 10.1007/s00442-008-1007-0 PubMedCrossRefGoogle Scholar
  69. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  70. Madlung A, Wendel JF (2013) Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res 140:270–285. doi: 10.1159/000351430 PubMedCrossRefGoogle Scholar
  71. Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Pl J 41:221–230. doi: 10.1111/j.1365-313X.2004.02297.x CrossRefGoogle Scholar
  72. Marchant CJ (1963) Corrected chromosome numbers for Spartina × townsendii and its parent species. Nature 199:929CrossRefGoogle Scholar
  73. Marchant CJ (1968) Evolution in Spartina (Gramineae): II. Chromosomes, basic relationships and the problem of S. × townsendii agg. J Linn Soc Bot 60:381–409. doi: 10.1111/j.1095-8339.1968.tb00096.x CrossRefGoogle Scholar
  74. Marchant CJ (1977) Hybrid characteristics in Spartina × neyrautii Fouc., a taxon rediscovered in northern Spain. Bot J Linn Soc 74:289–296. doi: 10.1111/j.1095-8339.1977.tb01182.x CrossRefGoogle Scholar
  75. McCarthy FM, Gresham CR, Buza TJ, Chouvarine P, Pillai L, Kumar R, Ozkan S, Wang H, Manda P, Arick T, Bridges SM, Burgess SC (2011) AgBase: supporting functional modeling in agricultural organisms. Nucl Acids Res 39:D497–D506. doi: 10.1093/nar/gkq1115 PubMedCrossRefGoogle Scholar
  76. Mobberley DG (1956) Taxonomy and distribution of the genus Spartina. Iowa State Coll J Sci 30:471–574Google Scholar
  77. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336. doi: 10.1126/science.1080585 PubMedCrossRefGoogle Scholar
  78. Oleksiak MF, Churchill GA, Crawford DL (2002) Variation in gene expression within and among natural populations. Nat Genet 32:261–266. doi: 10.1038/ng983 PubMedCrossRefGoogle Scholar
  79. Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien M-A, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015. doi: 10.1111/j.1469-8137.2009.03029.x PubMedCrossRefGoogle Scholar
  80. Peterson PM, Romaschenko K, Arrieta YH, Saarela JM (2014) Proposal to conserve the name Sporobolus against Spartina, Crypsis, Ponceletia, and Heleochloa (Poaceae: Chloridoideae: Sporobolinae). Taxon 63:1373–1374. doi: 10.12705/636.23 CrossRefGoogle Scholar
  81. Pezeshki SR, Hester MW, Lin Q, Nyman JA (2000) The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environm Pollut 108:129–139CrossRefGoogle Scholar
  82. Phillips DP, Human LRD, Adams JB (2015) Wetland plants as indicators of heavy metal contamination. Mar Pollut Bull 92:227–232. doi: 10.1016/j.marpolbul.2014.12.038 PubMedCrossRefGoogle Scholar
  83. Querné J, Ragueneau O, Poupart N (2011) In situ biogenic silica variations in the invasive salt marsh plant, Spartina alterniflora: a possible link with environmental stress. Pl Soil 352:157–171. doi: 10.1007/s11104-011-0986-5 CrossRefGoogle Scholar
  84. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  85. RamanaRao MV, Weindorf D, Breitenbeck G, Baisakh N (2012) Differential expression of the transcripts of Spartina alterniflora Loisel (smooth cordgrass) induced in response to petroleum hydrocarbon. Molec Biotechnol 51:18–26. doi: 10.1007/s12033-011-94360 CrossRefGoogle Scholar
  86. Rambani A, Page JT, Udall JA (2014) Polyploidy and the petal transcriptome of Gossypium. BMC Plant Biol 14:3. doi: 10.1186/1471-2229-14-3 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rapp R, Udall J, Wendel J (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18PubMedPubMedCentralCrossRefGoogle Scholar
  88. Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991) The evolution of Spartina anglica C.E. Hubbard (Gramineae): origin and genetic variability. Biol J Linn Soc 43:111–126. doi: 10.1111/j.1095-8312.1991.tb00588.x CrossRefGoogle Scholar
  89. Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Comber L, Steven C, Leitch AR (2010) Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann Bot (Oxford) 105:527–533. doi: 10.1093/aob/mcq008 CrossRefGoogle Scholar
  90. Riddin T, van Wyk E, Adams J (2016) The rise and fall of an invasive estuarine grass. S African J Bot 107:74–79. doi: 10.1016/j.sajb.2016.07.008 CrossRefGoogle Scholar
  91. Rousseau-Gueutin M, Bellot S, Martin GE, Boutte J, Chelaifa H, Lima O, Michon-Coudouel S, Naquin D, Salmon A, Ainouche K, Ainouche M (2015) The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): comparative analyses and molecular dating. Molec Phylogen Evol 93:5–16. doi: 10.1016/j.ympev.2015.06.013 CrossRefGoogle Scholar
  92. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Molec Biol 132:365–386Google Scholar
  93. Saarela JM, Graham SW (2009) Inference of phylogenetic relationships among the subfamilies of grasses (Poaceae: Poales) using meso-scale exemplar-based sampling of the plastid genome. Botany 88:65–84. doi: 10.1139/B09-093 CrossRefGoogle Scholar
  94. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molec Ecol 14:1163–1175. doi: 10.1111/j.1365-294X.2005.02488.x CrossRefGoogle Scholar
  95. Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134. doi: 10.1111/j.1469-8137.2009.03093.x PubMedCrossRefGoogle Scholar
  96. Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Pl Biol 24:101–109. doi: 10.1016/j.pbi.2015.02.007 CrossRefGoogle Scholar
  97. Strong DR, Ayres DR (2013) Ecological and evolutionary misadventures of Spartina. Annual Rev Ecol Evol Syst 44:389–410. doi: 10.1146/annurev-ecolsys-110512-135803 CrossRefGoogle Scholar
  98. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  99. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Tate JA, Ni Z, Scheen A-C, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611. doi: 10.1534/genetics.106.057646 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tate JA, Joshi P, Soltis KA, Soltis PS, Soltis DE (2009) On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Pl Biol 9:80. doi: 10.1186/1471-2229-9-80 CrossRefGoogle Scholar
  102. Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Pl Cell 15:2680–2693. doi: 10.1105/tpc.017376 CrossRefGoogle Scholar
  103. Vandesompele J, De Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11CrossRefGoogle Scholar
  104. Wang J, Tian L, Lee H-S, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517. doi: 10.1534/genetics.105.047894 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang L, Zhu W, Fang L, Sun X, Su L, Liang Z, Wang N, Londo JP, Li S, Xin H (2014) Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Pl Biol 14:103. doi: 10.1186/1471-2229-14-103 CrossRefGoogle Scholar
  106. Welchen E, Chan RL, Gonzalez DH (2002) Metabolic regulation of genes encoding cytochrome c and cytochrome c oxidase subunit Vb in Arabidopsis. Pl Cell Environm 25:1605–1615. doi: 10.1046/j.1365-3040.2002.00940.x CrossRefGoogle Scholar
  107. Winston F (2001) Control of eukaryotic transcription elongation. Genome Biol 2:reviews1006.1–1006.3CrossRefGoogle Scholar
  108. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244. doi: 10.1002/pmic.200400853 PubMedCrossRefGoogle Scholar
  109. Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z, Hong B, Gao J (2014) A zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis. Pl Cell 26:2038–2054. doi: 10.1105/tpc.114.124867 CrossRefGoogle Scholar
  110. Yannic G, Baumel A, Ainouche M (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae), a salt-marsh species in decline along the Western European Coast. Heredity 93:182–188. doi: 10.1038/sj.hdy.6800491 PubMedCrossRefGoogle Scholar
  111. Yoo M-J, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180. doi: 10.1038/hdy.2012.94 PubMedCrossRefGoogle Scholar
  112. Yoo M-J, Liu X, Pires JC, Soltis PS, Soltis DE (2014) Nonadditive gene expression in polyploids. Annual Rev Genet 48:485–517. doi: 10.1146/annurev-genet-120213-092159 CrossRefGoogle Scholar
  113. Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J (2016) Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). PLoS ONE 11:e0146242. doi: 10.1371/journal.pone.0146242 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Julie Ferreira de Carvalho
    • 1
  • Julien Boutte
    • 2
  • Pierre Bourdaud
    • 2
  • Houda Chelaifa
    • 2
  • Kader Ainouche
    • 2
  • Armel Salmon
    • 2
  • Malika Ainouche
    • 2
  1. 1.Department of Terrestrial EcologyNetherland Institute of Ecology NIOO-KNAWWageningenThe Netherlands
  2. 2.UMR CNRS 6553 ECOBIO, OSURUniversity of Rennes 1Rennes CedexFrance

Personalised recommendations