Plant Systematics and Evolution

, Volume 303, Issue 8, pp 1043–1060 | Cite as

Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid

  • J. Lunerová
  • S. Renny-Byfield
  • R. Matyášek
  • A. Leitch
  • A. Kovařík
Original Article
Part of the following topical collections:
  1. Polyploidy in Shallow and Deep Evolutionary Times


Nicotiana tabacum (tobacco) is a natural allotetraploid that formed from two diploid progenitors (N. sylvestris—S-genome, N. tomentosiformis—T-genome) within past 0.2 million years. Previous classical studies have shown that its 35S rDNA has been largely homogenised towards T-genome-like homeologs. However, the degree of conversion at single nucleotide resolution remains unknown. Here, we analysed intragenomic variation of rDNA at high resolution in natural tobacco, synthetic tobacco and the progenitors employing genomic, molecular and cytogenetic methods. In synthetic tobacco, we identified 13 highly (≥10% units) polymorphic sites in the 18S-5.8S-26S coding region. In contrast, only a single polymorphic site was detected in natural tobacco, indicating that gene conversion has removed most of the polymorphisms over shallow evolutionary times. However, the non-coding 26S-18S intergenic spacer (IGS) was highly polymorphic in both natural (57 polymorphic sites) and synthetic tobacco (128 polymorphic sites). In natural tobacco, most (64%) IGS polymorphisms were inherited from the N. tomentosiformis progenitor, while 36% appeared de novo indicating rapid rates of sequence divergence of IGS. FISH revealed that the T-genome-like units (harbouring N. tomentosiformis-type IGS) occurred on all four loci in tobacco variety 095-55, including those loci derived from N. sylvestris progenitor, while the variety SR-1 retained 1–2 S-genome loci unconverted and transcriptionally silenced. We discuss potential caveats associated with experimental and in silico approaches used for determination of rDNA polymorphisms. We also hypothesise that polyploidy-associated gene conversion may eliminate mutated and non-functional genes that have accumulated in progenitor genomes, thereby contributing to success of polyploidy species.


Concerted evolution Genetic variation Nicotiana tabacum Polyploidy rDNA 



The research was funded by the Czech Science Foundation (P501/17/11642S and P506/16-02149J) and NERC.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Human or animal participants

The present research does not involve human or animal participants. All authors have approved the manuscript.

Supplementary material

606_2017_1442_MOESM1_ESM.pdf (175 kb)
Online Resource 1. Sequence assembly of full length rDNA units from the GenBank clones. These sequences were used as references to build NGS consensus. (PDF 174 kb)
606_2017_1442_MOESM2_ESM.pdf (9.5 mb)
Online Resource 2. Sequence alignments of Nicotiana 35S rDNA (18S-ITS1-5.8S-ITS2-26S-IGS) reference and NGS consensus sequences. (a) A low resolution view. Coding regions and promoters are annotated with brown and red arrows, respectively. Regions of probes hybridisation are annotated with green arrows. Reference sequences used for haplotypic analysis and cDNA reads mapping are in cyan blue. PCR amplicons used in RT-CAPS analysis (Fig. 5) are in violet. Polymorphic restriction sites are in dark blue. (b) Nucleotide level-resolution view. (PDF 9768 kb)
606_2017_1442_MOESM3_ESM.xlsx (187 kb)
Online Resource 3. Data sets. Sheet 1 – List of DNA polymorphisms in N. sylvestris units. The polymorphic sites included single-nucleotide substitutions (SNV), insertions (INS), deletions (DEL) and multi-nucleotide variations (MNV). Sheet 2 – List of DNA polymorphisms in N. tomentosiformis units, as in sheet 1. Sheet 3 - List of DNA polymorphisms in N. tabacum var. SR-1 units, as in sheet 1. Sheet 4 - List of DNA polymorphisms in synthetic tobacco line TR1-A, as in sheet 1. Sheet 5 - List of DNA polymorphisms in an electronic N. sylvestris and N. tomentosiformis hybrid, as in sheet 1. Sheet 6 – Pairwise comparisons of NGS consensus and GenBank clones. Sheet 7 – Lengths of rDNA units and subregions. Sheet 8 – Summary of SNPs in the IGS region. Sheet 9 - Haplotypic analysis of rDNA subregions. Sheet 10 – Comparison of rDNA alleles between N. tabacum and N. tomentosiformis. Sheet 11 – ITS1 amplicon sequencing – cDNA. Sheet 12 – ITS1 amplicon sequencing – gDNA. Sheet 13 – Summary of ITS1 amplicon sequencing. (XLSX 187 kb)
606_2017_1442_MOESM4_ESM.pdf (362 kb)
Online Resource 4. Alignment of ITS1 consensus sequences from N. sylvestris (SYL58) and N. tomentosiformis (TOM58). (PDF 362 kb)
606_2017_1442_MOESM5_ESM.pdf (402 kb)
Online Resource 5. Analysis of tandem repeats in the A-subregion of IGS in N. tabacum, N. tomentosiformis, N. sylvestris. (PDF 401 kb)
606_2017_1442_MOESM6_ESM.pdf (536 kb)
Online Resource 6. Positions of restriction endonuclease recognition sites and regions of 26S probe hybridisation (rectangle) in rDNA units. (PDF 536 kb)


  1. Abou-Ellail M, Cooke R, Saez-Vasquez J (2011) Variations on a team: major and minor variants of Arabidopsis thaliana rDNA genes. Nucl Aust 2:294–299. doi: 10.4161/nucl.2.4.16561 Google Scholar
  2. Bennett MD, Leitch I (2012) Angiosperm DNA C-values database (release 8.0, Dec. 2012). Available at Accessed 2 Feb 2017
  3. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 27:573–580CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertier L, Leus L, D’Hondt L, de Cock A, Hofte M (2013) Host adaptation and speciation through hybridization and polyploidy in Phytophthora. PLoS ONE 8:e85385. doi: 10.1371/journal.pone.0085385 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borisjuk NV, Davidjuk YM, Kostishin SS, Miroshnichenco GP, Velasco R, Hemleben V, Volkov RA (1997) Structural analysis of rDNA in the genus Nicotiana. Pl Molec Biol 35:655–660. doi: 10.1023/A:1005856618898 CrossRefGoogle Scholar
  6. Borowska-Zuchowska N, Kwasniewski M, Hasterok R (2016) Cytomolecular analysis of ribosomal DNA evolution in a natural allotetraploid Brachypodium hybridum and its putative ancestors–dissecting complex repetitive structure of intergenic spacers. Front Pl Sci 7:1499. doi: 10.3389/fpls.2016.01499 Google Scholar
  7. Caperta AD, Neves N, Morais-Cecilio L, Malho R, Viegas W (2002) Genome restructuring in rye affects the expression, organization and disposition of homologous rDNA loci. J Cell Sci 115:2839–2846PubMedGoogle Scholar
  8. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953. doi: 10.1126/science.1253435 CrossRefPubMedGoogle Scholar
  9. Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot (Oxford) 92:107–127. doi: 10.1093/aob/mcg087 CrossRefGoogle Scholar
  10. Chelomina GN, Rozhkovan KV, Voronova AN, Burundukova OL, Muzarok TI, Zhuravlev YN (2016) Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer). J Ginseng Res 40:176–184. doi: 10.1016/j.jgr.2015.07.005 CrossRefPubMedGoogle Scholar
  11. Chen K, de Borne FD, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Pl J 80:669–682. doi: 10.1111/tpj.12661 CrossRefGoogle Scholar
  12. Clarskon J, Dodsworth S, Chase M (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Pl Syst Evol. doi: 10.1007/s00606-017-1416-9 Google Scholar
  13. Coutinho JP, Carvalho A, Martin A, Ribeiro T, Morais-Cecilio L, Lima-Brito J (2016) Oak ribosomal DNA: characterization by FISH and polymorphism assessed by IGS PCR-RFLP. Pl Syst Evol 302:527–544. doi: 10.1007/s00606-016-1281-y CrossRefGoogle Scholar
  14. Cullis CA (1975) Ribosomal cistron number in Nicotiana species and derived haploids. Chromosoma 50:435–441. doi: 10.1007/BF00327079 CrossRefGoogle Scholar
  15. Dadejova M, Lim KY, Souckova-Skalicka K, Matyasek R, Grandbastien MA, Leitch A, Kovarik A (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol 174:658–668. doi: 10.1111/j.1469-8137.2007.02034.x CrossRefPubMedGoogle Scholar
  16. Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117. doi: 10.1038/299111a0 CrossRefPubMedGoogle Scholar
  17. Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85. doi: 10.1111/j.1469-8137.2009.03118.x CrossRefPubMedGoogle Scholar
  18. Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18:448. doi: 10.1186/s12864-017-3791-6 CrossRefGoogle Scholar
  19. Fehrer J, Krak K, Chrtek J Jr (2009) Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol Biol 9:239. doi: 10.1186/1471-2148-9-239 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Galian JA, Rosato M, Rossello JA (2014) Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions. Syst Biol 63:219–230. doi: 10.1093/sysbio/syt101 CrossRefPubMedGoogle Scholar
  21. Ganley AR, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17:184–191. doi: 10.1101/gr.5457707 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ge XH, Ding L, Li ZY (2013) Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. Pl Cell Rep 32:1661–1673. doi: 10.1007/s00299-013-1475-5 CrossRefGoogle Scholar
  23. Goecks J, Nekrutenko A, Taylor J, Team G (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences. Genome Biol 11:R86. doi: 10.1186/gb-2010-11-8-r86 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goodspeed TH (1954) The genus Nicotiana, Chronica Botanica. Waltham, MassachusettsGoogle Scholar
  25. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  26. Harpke D, Peterson A (2006) Non-concerted ITS evolution in Mammillaria (Cactaceae). Molec Phylogen Evol 41:579–593. doi: 10.1016/j.ympev.2006.05.036 CrossRefGoogle Scholar
  27. Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: Kahl G (ed) The architecture of eukaryotic gene. Wiley, Weinheim, pp 371–384Google Scholar
  28. Ingle J, Timmis JN, Sinclair J (1975) The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Pl Physiol 55:496–501. doi: 10.1104/pp.55.3.496 CrossRefGoogle Scholar
  29. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Molec Gen Genet 240:159–169. doi: 10.1007/BF00277053 CrossRefPubMedGoogle Scholar
  30. Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 53:73–82. doi: 10.1016/j.ympev.2004.05.002 CrossRefGoogle Scholar
  31. Komarova NY, Grabe T, Huigen DJ, Hemleben V, Volkov RA (2004) Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Pl Molec Biol 56:439–463. doi: 10.1007/s11103-004-4678-x CrossRefGoogle Scholar
  32. Komarova NY, Grimm GW, Hemleben V, Volkov RA (2008) Molecular evolution of 35S rDNA and taxonomic status of Lycopersicon within Solanum sect. Petota. Pl Syst Evol 276:59–71. doi: 10.1007/s00606-008-0091-2 CrossRefGoogle Scholar
  33. Kovarik A, Fajkus J, Koukalova B, Bezdek M (1996) Species-specific evolution of telomeric and rDNA repeats in the tobacco composite genome. Theor Appl Genet 8:1108–1111CrossRefGoogle Scholar
  34. Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch AR (2004) Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82:615–625. doi: 10.1111/j.1095-8312.2004.00345.x CrossRefGoogle Scholar
  35. Kovarik A, Lim KY, Dadejová M, Matyasek R, Chase M, Knapp S, Clarkson J, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot (Oxford) 101:815–823. doi: 10.1093/aob/mcn019 CrossRefGoogle Scholar
  36. Ksiazczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, Tesarikova Z, Coriton O, Chevre AM (2011) Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120:557–571. doi: 10.1007/s00412-011-0331-z CrossRefPubMedGoogle Scholar
  37. Ksiazczyk T, Zwierzykowska E, Molik K, Taciak M, Krajewski P, Zwierzykowski Z (2015) Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. Protoplasma 252:985–996. doi: 10.1007/s00709-014-0734-9 CrossRefPubMedGoogle Scholar
  38. Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483. doi: 10.1126/science.1153585 CrossRefPubMedGoogle Scholar
  39. Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot (Oxford) 101:805–814. doi: 10.1093/aob/mcm326 CrossRefGoogle Scholar
  40. Lim KY, Kovarik A, Matyasek R, Bezdek M, Lichtenstein CP, Leitch AR (2000) Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109:161–172CrossRefPubMedGoogle Scholar
  41. Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A (2004) Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166:1935–1946. doi: 10.1534/genetics.166.4.1935 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovařík A, Leitch A (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. Amer J Bot 93:875–883. doi: 10.3732/ajb.93.6.875 CrossRefGoogle Scholar
  43. Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763. doi: 10.1111/j.1469-8137.2007.02121.x CrossRefPubMedGoogle Scholar
  44. Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:489–586. doi: 10.2174/1389202023350255 CrossRefGoogle Scholar
  45. Liu KD, Yang GP, Zhu SH, Zhang QF, Wang XM, Maroof MAS (1996) Extraordinarily polymorphic ribosomal DNA in wild and cultivated rice. Genome 39:1109–1116. doi: 10.1139/g96-139 CrossRefPubMedGoogle Scholar
  46. Liu Y, Forrest LL, Bainard JD, Budke JM, Goffinet B (2013) Organellar genome, nuclear ribosomal DNA repeat unit, and microsatellites isolated from a small-scale of 454 GS FLX sequencing on two mosses. Molec Phylogen Evol 66:1089–1094. doi: 10.1016/j.ympev.2012.12.006 CrossRefGoogle Scholar
  47. Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291. doi: 10.1186/1471-2148-10-291 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Matyasek R, Lim KY, Kovarik A, Leitch AR (2003) Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91:268–275. doi: 10.1038/sj.hdy.6800333 CrossRefPubMedGoogle Scholar
  49. Matyasek R, Renny-Byfield S, Fulnecek J, Macas J, Grandbastien MA, Nichols R, Leitch A, Kovarik A (2012) Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genom 13:722. doi: 10.1186/1471-2164-13-722 CrossRefGoogle Scholar
  50. Matyášek R, Dobešová E, Húska D, Ježková I, Soltis PS, Soltis DE, Kovařík A (2016) Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus. Pl J 85:362–377. doi: 10.1111/tpj.13110 CrossRefGoogle Scholar
  51. Moscone EA, Matzke MA, Matzke AJ (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236. doi: 10.1007/BF02528771 CrossRefGoogle Scholar
  52. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annual Rev Genet 39:121–152. doi: 10.1146/annurev.genet.39.073003.112240 CrossRefGoogle Scholar
  53. Neves N, Delgado M, Silva M, Caperta A, Morais-Cecilio L, Viegas W (2005) Ribosomal DNA heterochromatin in plants. Cytogenet Genome Res 109:104–111. doi: 10.1073/pnas.0409689102 CrossRefPubMedGoogle Scholar
  54. Nieto Feliner G, Rossello JA (2012) Concerted evolution of multigene families and homeologous recombination. In: Wendel JF (ed) Plant genome diversity, vol 1. Springer, Wien, pp 171–194CrossRefGoogle Scholar
  55. Noe L, Kucherov G (2005) YASS: enhancing the sensitivity of DNA similarity search. Nucl Acids Res 33:W540–W543. doi: 10.1093/nar/gki478 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147. doi: 10.1111/j.1469-8137.2009.03140.x CrossRefPubMedGoogle Scholar
  57. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245. doi: 10.1073/pnas.0407258102 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Leitch AR (2011) Next generation sequencing reveals evidence of genome downsizing and elimination of paternally derived repetitive DNA sequences in tobacco. Molec Biol Evol 28:2843–2854. doi: 10.1093/molbev/msr112 CrossRefPubMedGoogle Scholar
  59. Renny-Byfield S, Kovarik A, Chester M, Nichols RA, Macas J, Novak P, Leitch AR (2012) Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS ONE 7:e36963. doi: 10.1371/journal.pone.0036963 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Renny-Byfield S, Gong L, Gallagher JP, Wendel JF (2015) Persistence of subgenomes in paleopolyploid cotton after 60 My of evolution. Molec Biol Evol 32:1063–1071. doi: 10.1093/molbev/msv001 CrossRefPubMedGoogle Scholar
  61. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi: 10.1093/bioinformatics/btg359 CrossRefPubMedGoogle Scholar
  62. Sano Y, Sano R (1990) Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome 33:209–218Google Scholar
  63. Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833. doi: 10.1038/ncomms4833 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303. doi: 10.1111/j.1469-8137.2004.01297.x CrossRefPubMedGoogle Scholar
  65. Sochorova J, Coriton O, Kuderova A, Lunerova J, Chevre AM, Kovarik A (2017) Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. Ann Bot (Oxford) 119:13–26. doi: 10.1093/aob/mcw187 CrossRefGoogle Scholar
  66. Stage DE, Eickbush TH (2007) Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 17:1888–1897. doi: 10.1101/gr.6376807 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next generation sequencing for plant systemtatics. Amer J Bot 99:349–364. doi: 10.3732/ajb.1100335 CrossRefGoogle Scholar
  68. Szostak JW, Wu R (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426–430CrossRefPubMedGoogle Scholar
  69. Volkov R, Kostishin S, Ehrendorfer E, Schweizer D (1996) Molecular organization and evolution of the external transcribed rDNA spacer region in two diploid relatives of Nicotiana tabacum (Solanaceae). Pl Syst Evol 201:117–129. doi: 10.1007/BF00989055 CrossRefGoogle Scholar
  70. Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V (1999a) Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molec Biol Evol 16:311–320CrossRefPubMedGoogle Scholar
  71. Volkov RA, Bachmair A, Panchuk II, Kostyshyn SS, Schweizer D (1999b) 25S-18S rDNA intergenic spacer of Nicotiana sylvestris (Solanaceae): primary and secondary structure analysis. Pl Syst Evol 218:89–97. doi: 10.1007/BF01087037 CrossRefGoogle Scholar
  72. Volkov RA, Komarova NY, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodivers (NHM Lond) 5:261–276. doi: 10.1017/S1477200007002447 CrossRefGoogle Scholar
  73. Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V (2017) Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Pl Biol 17:21. doi: 10.1186/s12870-017-0978-6 CrossRefGoogle Scholar
  74. Wang W, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ, Leitch AR, Kovarik A (2016) Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125:683–699. doi: 10.1007/s00412-015-0556-3 CrossRefPubMedGoogle Scholar
  75. Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 140:137–150. doi: 10.1159/000351727 CrossRefPubMedGoogle Scholar
  76. Weitemier K, Straub SC, Fishbein M, Liston A (2015) Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae). PeerJ 3:e718. doi: 10.7717/peerj.718 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xiong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913. doi: 10.1073/pnas.1014138108 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes-coding for the alpha-chains of hemoglobin. Proc Natl Acad Sci USA 77:2158–2162. doi: 10.1073/pnas.77.4.2158 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institute of BiophysicsAcademy of Sciences of the Czech Republic, v.v.i.BrnoCzech Republic
  2. 2.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations