Advertisement

Plant Systematics and Evolution

, Volume 303, Issue 8, pp 1115–1121 | Cite as

Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes

  • Daniel Vitales
  • Ugo D’Ambrosio
  • Francisco Gálvez
  • Aleš Kovařík
  • Sònia GarciaEmail author
Original Article
Part of the following topical collections:
  1. Polyploidy in Shallow and Deep Evolutionary Times

Abstract

Here we present the third release of the plant rDNA database (March 2017), an open access online resource with information on numbers, locations and structure of 5S and 18S-5.8S-26S (35S) ribosomal DNA (rDNA) (www.plantrdnadatabase.com). Data are now available for 2148 species (3783 entries), extracted from 785 papers published until the end of 2016. This means an expansion of 33.5% in terms of new species and 13% in new publications consulted. We appreciate an increased interest on rDNA loci research in recent years, since 10.78% of all data available were published only in 2016. The database has been expanded to include information on telomere composition and on species whose genome has been fully sequenced up to date. Telomere sequence is only known with certainty for 9.60% of species in the database and for 36.79% at the genus level, indicating, potentially, that the consensus plant telomere (Arabidopsis-type) might not be as extended as previously thought. We have also introduced the taxonomic category order as an additional option for data browsing. Similarly, we have included a new category to indicate the hybrid status of taxa. In addition, we upgraded and/or proofread tabs and links and slightly modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments.

Keywords

5S 35S Chromosome Karyotype Sequenced plant genomes Telomere 

Notes

Acknowledgements

We thank Karina Barros and Maria Pilar Alonso-Lifante, librarians of the IBB-CSIC-ICUB, for their help in publication search. The Dirección General de Investigación Científica y Técnica from the Government of Spain (CGL2016-75694-P), the Czech Science Foundation (P506/16/02149 J) and the Government of Catalonia (“Ajuts a grups de recerca consolidats”, 2014SGR514) are acknowledged for funding. Sònia Garcia benefits from a “Ramón y Cajal” contract from the Government of Spain (RYC-2014-16608).

Compliance with ethical standards

Conflict of interest

The authors declare that has no conflict of interest.

References

  1. Adachi J, Watanabe K, Fukui K, Ohmido N, Kosuge K (1997) Chromosomal location and reorganization of the 45S and 5S rDNA in the Brachyscome lineariloba complex (Asteraceae). J Pl Res 110:371–377. doi: 10.1007/BF02524936 CrossRefGoogle Scholar
  2. Adams SP, Hartman TPV, Lim KY, Chase MW, Bennett MD, Leitch IJ, Leitch AR (2001) Loss and recovery of Arabidopsis–type telomere repeat sequences 5′–(TTTAGGG) n–3′ in the evolution of a major radiation of flowering plants. Proc Roy Soc London, Ser B, Biol Sci 268:1541–1546. doi: 10.1098/rspb.2001.1726 CrossRefGoogle Scholar
  3. Bedini G, Pierini B, Roma-Marzio F, Caparelli KF, Bonari G, Dolci D, Gestri G, D’Antraccoli M, Peruzzi L (2016) Wikiplantbase#Toscana, breaking the dormancy of floristic data. Pl Biosyst 150:601–610. doi: 10.1080/11263504.2015.1057266 CrossRefGoogle Scholar
  4. Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec. 2012). Available at: http://www.kew.org/cvalues/. Accessed 30 Jan 2017
  5. Bolsheva NL, Dyachenko OV, Samatadze TE, Rachinskaya OA, Zakharchenko NS, Shevchuk TV, Amosova AV, Muravenko O, Zelenin AV (2016) Karyotype of Mesembryanthemum crystallinum (Aizoaceae) studied by chromosome banding, FISH with rDNA probes and immunofluorescence detection of DNA methylation. Pl Biosyst 150:916–922. doi: 10.1080/11263504.2014.991360 CrossRefGoogle Scholar
  6. Cohen S, Agmon N, Sobol O, Segal D (2010) Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mobile DNA 1:11. doi: 10.1186/1759-8753-1-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Drouin G, De Sa MM (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Molec Biol Evol 12:481–493. doi: 10.1186/1471-2148-11-151 PubMedGoogle Scholar
  8. Dvořáčkova M, Fotjová M, Fajkus J (2015) Chromatin dynamics of plant telomeres and ribosomal genes. Pl J 83:18–37. doi: 10.1111/tpj.12822 CrossRefGoogle Scholar
  9. Fajkus P, Peška V, Sitová Z, Fulnečková J, Dvořáčková M, Gogela R, Fajkus J (2016) Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. Pl J 85:337–347. doi: 10.1111/tpj.13115 CrossRefGoogle Scholar
  10. Fulcher N, Teubenbacher A, Kerdaffrec E, Farlow A, Nordborg M, Riha K (2015) Genetic architecture of natural variation of telomere length in Arabidopsis thaliana. Genetics 199(2):625–635. doi: 10.1534/genetics.114.172163 CrossRefPubMedGoogle Scholar
  11. Galián JA, Rosato M, Rosselló JA (2012) Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity 108:640–646. doi: 10.1038/hdy.2012.2 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Garcia S, Kovařík A (2013) Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene rDNA organisation. Heredity 111:23–33. doi: 10.1038/hdy.2013.11 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch AR, Kovařík A (2009) Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 118:85–97. doi: 10.1007/s00412-008-0179-z CrossRefPubMedGoogle Scholar
  14. Garcia S, Panero JL, Siroky J, Kovařík A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes rDNA in the Asteraceae family. BMC Pl Biol 10:176. doi: 10.1186/1471-2229-10-176 CrossRefGoogle Scholar
  15. Garcia S, Gálvez F, Gras A, Kovařík A, Garnatje T (2014) Plant rDNA database: update and new features. Database. doi: 10.1093/database/bau063 Google Scholar
  16. Garcia S, Kovařík A, Leitch AR, Garnatje T (2017) Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Pl J 89:1020–1030. doi: 10.1111/tpj.13442 CrossRefGoogle Scholar
  17. Garnatje T, Canela MA, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Vallès J (2011) GSAD: a genome size in the asteraceae database. Cytom Part A. doi: 10.1002/cyto.a.21056 Google Scholar
  18. Golczyk H, Massouh A, Greiner S (2014) Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. Pl Cell 26:1280–1293, doi: 10.1105/tpc.114.122655 CrossRefGoogle Scholar
  19. Hizume M (1994) Allodiploid nature of Allium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs. Jap J Genet 69:407–415. doi: 10.1266/jjg.69.407 CrossRefGoogle Scholar
  20. Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105:5833–5838. doi: 10.1073/pnas.0709698105 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kapitonov VV, Jurka J (2003) A novel class of SINE elements derived from 5S rRNA. Molec Biol Evol 20:694–702. doi: 10.1093/molbev/msg075 CrossRefPubMedGoogle Scholar
  22. Layat E, Sáez-Vásquez J, Tourmente S (2012) Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis. Pl Cell Physiol 53:267–276. doi: 10.1093/pcp/pcr177 CrossRefGoogle Scholar
  23. Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) In situ hybridization: a practical guide. Bios Scientific Publishers Ltd, OxfordGoogle Scholar
  24. Li KP, Wu YX, Zhao H, Wang Y, Lü XM, Wang JM, Xu Y, Li ZY, Han YH (2016) Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC Evol Biol 16:85. doi: 10.1093/pcp/pcr177 CrossRefPubMedPubMedCentralGoogle Scholar
  25. McClintock B (1955) Controlled mutation in maize. Carnegie Inst. Washington Year Book 54:245–255Google Scholar
  26. Mizuochi H, Marasek A, Okazaki K (2007) Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana. Euphytica 155:235–248. doi: 10.1007/s10681-006-9325-y CrossRefGoogle Scholar
  27. Peška V, Sýkorová E, Fajkus J (2008) Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins. Cytog Gen Res 122:380–387. doi: 10.1159/000167826 CrossRefGoogle Scholar
  28. Peška V, Fajkus P, Fojtová M, Dvořáčková M, Hapala J, Dvořáček V, Fajkus J (2015) Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Pl J 82:644–654. doi: 10.1111/tpj.12839 CrossRefGoogle Scholar
  29. Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The Chromosome Counts Database (CCDB): a community resource of plant chromosome numbers. New Phytol 206:19–26. doi: 10.1111/nph.13191 CrossRefPubMedGoogle Scholar
  30. Robert ML, Lim KY, Hanson L, Sanchez-Teyer F, Bennett MD, Leitch AR, Leitch IJ (2008) Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot J Linn Soc 158:215–222. doi: 10.1111/j.1095-8339.2008.00831.x CrossRefGoogle Scholar
  31. Rosato M, Kovařík A, Garilleti R, Rosselló JA (2016) Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PLoS ONE 11:e0162544. doi: 10.1371/journal.pone.0162544 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shibata F, Hizume M (2011) Survey of Arabidopsis- and Human-type telomere repeats in plants using fluorescence in situ hybridisation. Cytologia 76:353–360. doi: 10.1508/cytologia.76.353 CrossRefGoogle Scholar
  33. Sochorová J, Coriton O, Kuderová A, Lunerová J, Chèvre AM, Kovařík A (2017) Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. Ann Bot (Oxford) 116:13–26. doi: 10.1093/aob/mcw187 CrossRefGoogle Scholar
  34. Souza G, Vanzela AL, Crosa O, Guerra M (2016) Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae). Genetica 144(2):157–166. doi: 10.1007/s10709-016-9886-1 CrossRefPubMedGoogle Scholar
  35. Suzuki K (2004) Characterization of telomere DNA among five species of pteridophytes and bryophytes. J Bryol 26:175–180. doi: 10.1179/037366804X5279 CrossRefGoogle Scholar
  36. Sýkorová E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003a) The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Pl J 34:283–291. doi: 10.1046/j.1365-313X.2003.01731.x CrossRefGoogle Scholar
  37. Sýkorová E, Lim KY, Kunická Z, Chase MW, Bennett MD, Fajkus J, Leitch AR (2003b) Telomere variability in the monocotyledonous plant order Asparagales. Proc Roy Soc London, Ser B, Biol Sci 270:1893–1904. doi: 10.1098/rspb.2003.2446 CrossRefGoogle Scholar
  38. The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: aPG IV. Bot J Linn Soc 181:1–20. doi: 10.1111/boj.12385 CrossRefGoogle Scholar
  39. The Plant List (2010) Version 1. Published on the internet. Available at: http://www.theplantlist.org/. Accessed 30 Jan 2017
  40. Thomas HM, Williams K, Harper JA (1996) Labelling telomeres of cereals, grasses and clover by primed in situ DNA labelling. Chrom Res 4:182–184. doi: 10.1007/BF02254956 CrossRefPubMedGoogle Scholar
  41. Tran TD, Cao HX, Jovtchev G, Neumann P, Novák P, Fojtová M, Vu GTH, Macas J, Fajkus J, Schubert I, Fuchs J (2015) Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Pl J 84:1087–1099. doi: 10.1111/tpj.13058 CrossRefGoogle Scholar
  42. Vierna J, Wehner S, Honer zu Siederdissen CH, Martínez-Lage A, Marz M (2013) Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity 1115:410–421. doi: 10.1038/hdy.2013.63 CrossRefGoogle Scholar
  43. Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V (2017) Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Pl Biol 17:21. doi: 10.1186/s12870-017-0978-6 CrossRefGoogle Scholar
  44. Wicke S, Costa A, Muñoz J, Quandt D (2011) Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Molec Phylogen Evol 61:321–332. doi: 10.1016/j.ympev.2011.06.023 CrossRefGoogle Scholar
  45. Young HA, Sarath G, Tobias CM (2012) Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass. BMC Pl Biol 12:117. doi: 10.1186/1471-2229-12-117 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institut Botànic de Barcelona (IBB-CSIC- ICUB)BarcelonaSpain
  2. 2.Bioscripts - Centro de Investigación y Desarrollo de Recursos CientíficosSevilleSpain
  3. 3.Institute of Biophysics, Academy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations