Plant Systematics and Evolution

, Volume 303, Issue 7, pp 981–986 | Cite as

The largest fungal genome discovered in Jafnea semitosta

  • Zuzana EgertováEmail author
  • Michal Sochor
Short Communication


Jafnea semitosta is an ascomycete (Pyronemataceae, Pezizales) originating from North America and spreading uncommonly in Europe. Its genome size was measured via flow cytometry of fruiting bodies from five localities in the Czech and Slovak Republic. The nuclear 1C DNA content was estimated at 3.706 ± 0.011 pg (~3.625 ± 0.011 Gbp) which represents the highest value ever reported for fungi and 100× higher than the average. Generally, the genome inflation in fungi appears to be driven mainly by proliferation of repetitive sequences, but polyploidy should also be considered in further studies on this greatly unexplored topic.


Ascomycetes Flow cytometry Genome size Jafnea semitosta 



We thank Jaroslav Doležel, Michaela Sedlářová, the editor and two anonymous reviewers for valuable comments, Viktorie Halasů for providing collections of Jafnea semitosta from Ivaň and Valtice, Vincent Kabát for the specimen from Bratislava and Igor Hlavatý for specimen from Močenok. The project was financed by an internal Grant from Palacký University (IGA_PrF_2016_001). MS was supported by Grant No. LO1204 (Sustainable development of research in the Centre of the Region Haná) from the National Program of Sustainability I, MEYS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2017_1424_MOESM1_ESM.pdf (13 kb)
Online Resource 1. List of studied accession of Jafnea semitosta for flow cytometric measurements (PDF 13 kb)
606_2017_1424_MOESM2_ESM.pdf (11 kb)
Online Resource 2. DNA content estimates (in pg) for different internal standards and RNase treatments (without RNase and with RNase with different incubation time at 37 °C) (PDF 11 kb)


  1. Albertin W, Marullo P (2012) Polyploidy in fungi: evolution after whole-genome duplication. Proc Biol Sci 279:2497–2509. doi: 10.1098/rspb.2012.0434 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antonín V, Moravec J (2010) Jafnea semitosta (Ascomycota, Pyronemataceae), first collection in the Czech Republic. Czech Mycol 62:1–11Google Scholar
  3. Benkert D, Klofac W (2004) Jafnea semitosta (Ascomycetes, Pezizales), ein amerikanischer Becherling offenbar erstmals in Europa. Osterr Z Pilzk 13:55–59Google Scholar
  4. Bennett MD, Leitch IJ (2012–2017a) Plant DNA C-values database (release 6.0, Dec 2012). Available at: Accessed 11 Apr 2017
  5. Bennett MD, Leitch IJ (2012–2017b) Pteridophyte DNA C-values database (release 6.0, Dec 2012). Available at: Accessed 11 Apr 2017
  6. Berkeley MJ (1875) Notices of North American fungi. Grevillea 3:145–160Google Scholar
  7. Campbell MA, Ganley ARD, Gabaldón T, Cox MP (2016) The case of missing ancient fungal polyploids. Amer Naturalist 188:602–614. doi: 10.1086/688763 CrossRefGoogle Scholar
  8. Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ (2010) The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 1:77. doi: 10.1038/ncomms1082 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Croll D, McDonald BA (2012) The accessory genome as a cradle for adaptive evolution in pathogens. Pl Pathol 8:8–10. doi: 10.1371/journal.ppat.1002608 Google Scholar
  10. Doležel J, Greilhuber J (2010) Nuclear genome size: Are we getting closer? Cytometry A 77:635–642. doi: 10.1002/cyto.a.20915 CrossRefPubMedGoogle Scholar
  11. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Pl 85:625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x CrossRefGoogle Scholar
  12. Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Pl 36:351–357. doi: 10.1007/BF02920930 CrossRefGoogle Scholar
  13. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128. doi: 10.1002/cyto.a.10013 CrossRefPubMedGoogle Scholar
  14. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. doi: 10.1038/nprot.2007.310 CrossRefPubMedGoogle Scholar
  15. Gregory TR (2005–2017) Animal genome size database. Available at: Accessed 11 Apr 2017
  16. Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucl Acids Res 35(Database issue):D332–D338. doi: 10.1093/nar/gkl828 CrossRefPubMedGoogle Scholar
  17. Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley, Weinheim, pp 67–101. doi:  10.1002/9783527610921.ch4
  18. Greilhuber J, Obermayer R, Leitch IJ, Bennett MD (2010–2017) Bryophyte DNA C-values database (release 3.0, Dec 2010). Available at: Accessed 11 Apr 2017
  19. Jacobsen PB, Stokke T, Solesvik O, Steen HB (1988) Temperature-induced chromatin changes in ethanol-fixed cells. J Histochem Cytochem 36:1495–1501. doi: 10.1177/36.12.2461412 CrossRefPubMedGoogle Scholar
  20. Kapraun DF, Leitch IJ, Bennett MD (2004–2017) Algal DNA C-values database (release 1.0, Dec 2004). Available at: Accessed 11 Apr 2017
  21. Kelkar YD, Ochman H (2011) Causes and consequences of genome expansion in fungi. Genome Biol Evol 4:13–23. doi: 10.1093/gbe/evr124 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, WallingfordGoogle Scholar
  23. Kullman B (2000) Application of flow cytometry for measurement of nuclear DNA content in fungi. Folia Cryptog Estonica 36:31–46Google Scholar
  24. Kullman B (2002) Nuclear DNA content, life cycle and ploidy in two Neottiella species (Pezizales, Ascomycota). Persoonia 18:103–114Google Scholar
  25. Kullman B, Tamm H, Kullman K (2005–2016) Fungal genome size database. Available at: Accessed 4 Oct 2016
  26. Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132. doi: 10.1080/00087114.1998.10589127 CrossRefGoogle Scholar
  27. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038. doi: 10.1038/nature08867 CrossRefPubMedGoogle Scholar
  28. Murray BG, Leitch IJ, Bennett MD (2012–2017) Gymnosperm DNA C-values database (release 5.0, Dec 2012). Available at: Accessed 11 Apr 2017
  29. Noirot M, Barre P, Louarn J, Duperray C, Hamon S (2000) Nucleus–cytosol interactions - A source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot (Oxford) 86:309–316. doi: 10.1006/anbo.2000.1187 CrossRefGoogle Scholar
  30. Perry BA, Hansen K, Pfister DH (2007) A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales). Mycol Res 111:549–571. doi: 10.1016/j.mycres.2007.03.014 CrossRefPubMedGoogle Scholar
  31. Pombert JF, Selman M, Burki F, Bardell FT, Farinelli L, Solter LF, Whitman DW, Weiss LM, Corradi N, Keeling PJ (2012) Gain and loss of multiple functionally related, horizontally transferred genes in the reduced genomes of two microsporidian parasites. Proc Natl Acad Sci USA 109:12638–12643. doi: 10.1073/pnas.1205020109 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ramos AP, Tavares S, Tavares D, Silva MC, Loureiro J, Talhinhas P (2015) Flow cytometry reveals that the rust fungus, Uromyces bidentis (Pucciniales), possesses the largest fungal genome reported—2489 Mbp. Molec Pl Pathol 16:1006–1010. doi: 10.1111/mpp.12255 CrossRefGoogle Scholar
  33. Rogers JD (1968) Xylaria curta: cytology of the ascus. Canad J Bot 46:1337–1340. doi: 10.1139/b68-182 CrossRefGoogle Scholar
  34. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, van Themaat EVL, Brown JKM, Butcher SA, Gurr SJ, Lebrun M-H, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Weßling R, Wicker T, Panstruga R (2010) Powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546. doi: 10.1126/science.1194573 CrossRefPubMedGoogle Scholar
  35. Tavares S, Ramos AP, Pires AS, Azinheira HG, Caldeirinha P, Link T, Abranches R, Silva MC, Voegele RT, Loureiro J, Talhinhas P (2014) Genome size analyses of Pucciniales reveal the largest fungal genomes. Frontiers Pl Sci 5:422. doi: 10.3389/fpls.2014.00422 Google Scholar
  36. Uecker FA (1967) Stephensia shanori. I. Cytology of the ascus and other observations. Mycologia 59:819–832. doi: 10.2307/3757194 CrossRefGoogle Scholar
  37. Veselská T, Svoboda J, Růžičková Ž, Kolařík M (2014) Application of flow cytometry for genome size determination in Geosmithia fungi: a comparison of methods. Cytometry A 85:854–861. doi: 10.1002/cyto.a.22500 CrossRefPubMedGoogle Scholar
  38. Weber E (1992) Untersuchungen zu Fortpflanzung und Ploidie verschiedener Ascomyceten. J Cramer, Berlin-StuttgartGoogle Scholar
  39. Weber E, Bresinky A (1992) Polyploidy in discomycetes. Persoonia 14:553–563Google Scholar
  40. Wilson CM (1952) Meiosis in Allomyces. Bull Torrey Bot Club 79:139–160. doi: 10.2307/2481932 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Botany, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
  2. 2.Department of Genetic Resources for Vegetables, Centre of the Region Haná for Biotechnological and Agricultural Research, Medicinal and Special PlantsCrop Research InstituteOlomoucCzech Republic

Personalised recommendations