Plant Systematics and Evolution

, Volume 302, Issue 9, pp 1239–1252 | Cite as

Floral biology of Schismatoglottis baangongensis (Araceae) in West Sarawak, Borneo

Original Article


The flowering mechanism, visiting insect activities, reproductive system, and floral scent composition of Schismatoglottis baangongensis a Northwest Bornean locally endemic limestone-restricted protogynous mesophyte were investigated. Anthesis started at dawn and lasted ca 29 h. Fruit set for open pollination (93 %) and restricted access pollination (88 %) were high. Colocasiomyia (Diptera, Drosophilidae) and Cycreon (Coleoptera, Hydrophilidae) were the main pollinators. Colocasiomyia flies present in much higher numbers than Cycreon beetles individually carried significantly less pollen load. Chaloenus (Chrysomelidae, Galerucinae) was inadvertent pollinators, and Atheta (Coleoptera, Staphylinidae) passive visitors. Pollen transferal between dissimilar insect genera (Colocasiomyia and Chaloenus) is reported for the first time. Low pollen/ovule ratio of S. baangongensis indicated an efficient pollination mechanism. Ester compound class floral odours, especially the dominant compounds 3-butenoic acid, 3-methyl-, methyl ester, were decisive in attracting pollinators. The spadix appendix of S. baangongensis was the main olfactory body although the spathe was detected to release an additional N-containing compound, an indole. An increase in the total amount of floral scent from the pistillate flower zone during pistillate phase of anthesis from Period I (06:00–08:00 h) to Period II (08:00–10:00 h) was postulated to detain insects in the lower chamber of the inflorescence.


Ester compound class Floral volatiles Pollen load Pollination 



This is part of an on-going research funded by the Ministry of Education of Malaysia through Vote Nos. ERGS/01(02)/808/2011(03), FRGS/STWN10(01)985/2013(26) and NRGS/1089/2013-(03). The collaboration and support of the Sarawak Forestry Department are gratefully acknowledged. The most recent fieldwork has been conducted under Research Permit No. NCCD.907.4.4(Jld.12)-51 and Park Permit No. 121/2015. We sincerely thank Masanori J. Toda, Haruo Matsuzawa, Masahito T. Kimura, Alexander G. Kirejtshuk, and Martin Fikáček for identifying the insect specimens. We also thank the two anonymous reviewers for their constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2016_1329_MOESM1_ESM.pdf (5.1 mb)
Online Resource 1. Unidentified black (white arrows) and red ants (yellow arrows) are dispersing the fruits (PDF 5222 kb)
606_2016_1329_MOESM2_ESM.pdf (2.4 mb)
Online Resource 2. Pollen view under compound microscope. a Schismatoglottis pollen grains loaded on Cycreon beetles (200X magnification), b–d unidentified pollen grains on Cycreon beetles (200 × magnification), e Schismatoglottis pollen grains (100× magnification), f unidentified pollen grain on Colocasiomyia flies (200X magnification) (PDF 2458 kb)


  1. Andersson S, Nilsson LA, Groth I, Bergstrom G (2002) Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot J Linn Soc 140:129–153. doi: 10.1046/j.1095-8339.2002.00068.x CrossRefGoogle Scholar
  2. Aronne G, Giovanetti M, Sacchi R, Micco VD (2014) From flower to honey bouquet: possible markers for the botanical origin of Robinia honey. Sci World J 547275:1–7. doi: 10.1155/2014/547275 CrossRefGoogle Scholar
  3. Borg-Karlson AK, Englund FO, Unelius CR (1994) Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry 35:321–323. doi: 10.1016/S0031-9422(00)94756-3 CrossRefGoogle Scholar
  4. Boyce PC, Croat TB (2010–2016) The Überlist of Araceae. Accessed 4 Jun 2016
  5. Boyce PC, Wong SY, Low SL, Ting APJ, Low SE, Ooi IH, Ng KK (2010) Araceae of Borneo. Aroideana 33:3–74Google Scholar
  6. Bröderbauer D, Diaz A, Weber A (2012) Reconstructing the origin and elaboration of insect-trapping inflorescences in the Araceae. Amer J Bot 99:1666–1679. doi: 10.3732/ajb.1200274 CrossRefGoogle Scholar
  7. Chartier M, Pélozuelo L, Gibernau M (2011) Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae). Ann Soc Entomol Fr 47:71–77. doi: 10.1080/00379271.2011.10697698 Google Scholar
  8. Chartier M, Pélozuelo L, Buatois B, Bessière J-M, Gibernau M (2013) Geographic variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species (Araceae). Funct Ecol 27:1367–1381. doi: 10.1111/1365-2435.12122 CrossRefGoogle Scholar
  9. Chartier M, Liagre S, Weiss-Schneeweiss H, Kolano B, Bessière J-M, Schönenberger J, Gibernau M (2016) Floral traits and pollination ecology of European Arum hybrids. Oecologia 180:439–451. doi: 10.1007/s00442-015-3498-9 CrossRefPubMedGoogle Scholar
  10. Chouteau M, Barabé D, Gibernau M (2006a) A comparative study of inflorescence characters and pollen-ovule ratios among the genera Philodendron and Anthurium (Araceae). Int J Pl Sci 167:817–829. doi: 10.1086/504925 CrossRefGoogle Scholar
  11. Chouteau M, Barabé D, Gibernau M (2006b) Pollen-ovule ratios in some neotropical Araceae and their putative significance. Pl Syst Evol 257:147–157. doi: 10.1007/s00606-005-0328-2 CrossRefGoogle Scholar
  12. Chouteau M, Barabé D, Gibernau M (2008) Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Bot J Linn Soc 156:29–42. doi: 10.1111/j.1095-8339.2007.00753.x CrossRefGoogle Scholar
  13. Diaz A, Kite GC (2002) A comparison of pollination ecology of Arum maculatum and A. italicum in England. Watsonia 24:171–181Google Scholar
  14. Dobson HEM (1994) Floral Volatiles in Insect Biology. In: Bernays EA (ed) Insect-plant interactions, vol 5. CRC Press, Boca Raton, pp 47–81Google Scholar
  15. Dobson EMH, Arroyo J, Bergström G, Groth I (1997) Interspecific variation in floral fragrances within the genus Narcissus (Amaryllidaceae). Biochem Syst Ecol 25:685–706. doi: 10.1016/S0305-1978(97)00059-8 CrossRefGoogle Scholar
  16. Dötterl S, David A, Boland W, Silberbauer-Gottsberger I, Gottsberger G (2012) Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J Chem Ecol 38:1539–1543. doi: 10.1007/s10886-012-0210-y CrossRefPubMedGoogle Scholar
  17. García-Robledo C, Kattan G, Murcia C, Quintero-Marin P (2004) Beetle pollination and fruit predation of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. J Trop Ecol 20:459–469. doi: 10.1017/S0266467404001610 CrossRefGoogle Scholar
  18. García-Robledo C, Quintero-Marín P, Mora-Kepfer F (2005) Geographic variation and succession of arthropod communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica 37:650–656. doi: 10.1111/j.1744-7429.2005.00082.x CrossRefGoogle Scholar
  19. Gibernau M, Barabé D (2002) Pollination ecology of Philodendron squamiferum (Araceae). Canad J Bot 80:316–320. doi: 10.1139/b02-006 CrossRefGoogle Scholar
  20. Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Pl Sci 160:1135–1143. doi: 10.1086/314195 CrossRefGoogle Scholar
  21. Gibernau M, Barabé D, Labat D, Cerdan P, Dejean A (2003) Reproductive biology of Montrichardia arborescens (Araceae) in French Guiana. J Trop Ecol 19:1–5. doi: 10.1017/S0266467403003134 CrossRefGoogle Scholar
  22. Gibernau M, Chartier M, Barabé D (2010) Recent advances towards and evolutionary comprehension of Araceae pollination. In: Seberg O, Petersen G, Barford AS, Davis J (eds) Diversity, phylogeny and evolution in the monocotyledons. Aarhus University Press, Aarhus, pp 101–114. doi: 10.13140/2.1.2636.0965 Google Scholar
  23. Gottsberger G, Silberbauer-Gottsberger I, Dötterl S (2013) Pollination and floral scent differentiation in species of the Philodendron bipinnatifidum complex (Araceae). Pl Syst Evol 299:793–809. doi: 10.1007/s00606-013-0763-4 CrossRefGoogle Scholar
  24. Hadacek F, Weber M (2002) Club-shaped organs as additional osmophores within the Sauromatum inflorescence: odour analysis, ultrastructural changes and pollination aspects. Pl Biol 4:367–383. doi: 10.1055/s-2002-32335 CrossRefGoogle Scholar
  25. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9. Accessed 1 Dec 2015
  26. Hay A, Yuzammi (2000) Schismatoglottideae (Araceae) in Malesia I- Schismatoglottis. Telopea 9:1–117CrossRefGoogle Scholar
  27. Hentrich H, Kaiser R, Gottsberger G (2007) Floral scent collection at the perfume flowers of Anthurium rubrinervium (Araceae) by the kleptoparasitic orchid bee Aglae caerulea (Euglossini). Ecotropica 13:149–155Google Scholar
  28. Hentrich H, Kaiser R, Gottsberger G (2010) Floral biology and reproductive isolation by floral scent in three sympatric aroid species in French Guiana. Pl Biol 12:587–596. doi: 10.1111/j.1438-8677.2009.00256.x Google Scholar
  29. Hoe YC, Wong SY, Boyce PC, Wong MH, Chan MKY (2011) Studies on Homalomeneae (Araceae) of Borneo VII: Homalomena debilicrista, a new species from Malaysian Borneo and observations of its pollination mechanics. Pl Diversity Evol 129:77–87. doi: 10.1127/1869-6155/2011/0129-0045 CrossRefGoogle Scholar
  30. Hoe YC, Gibernau M, Maia ACD, Wong SY (2016) Flowering mechanisms, pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp. (Araceae) on Borneo. Pl Biol. doi: 10.1111/plb.12431 Google Scholar
  31. Hotta M, Okada H, Ito M (1985) Species diversity at wet tropical environment I. Polymorphic variation and population structure of Schismatoglottis lancifolia (Araceae) in West Sumatra. Contrib Biol Lab Kyoto Univ 27:9–71Google Scholar
  32. Ivancic A, Roupsard O, Garcia JQ, Lebot V, Pochyla V, Okpul T (2005) Thermogenic flowering of the giant taro (Alocasia macrorrhizos, Araceae). Canad J Bot 83:647–655. doi: 10.1139/b05-040 CrossRefGoogle Scholar
  33. Jürgens A, Witt T, Gottsberger G (2002) Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem Syst Ecol 30:383–397. doi: 10.1016/S0305-1978(01)00106-5 CrossRefGoogle Scholar
  34. Kevan PG (1989) How honey bees forage for pollen at skunk cabbage, Symplocarpus foetidus (Araceae). Apidologie 20:485–490. doi: 10.1051/apido:19890604 CrossRefGoogle Scholar
  35. Kite GC (1995) The floral odour of Arum maculatum. Biochem Syst Ecol 23:343–354. doi: 10.1016/0305-1978(95)00026-Q CrossRefGoogle Scholar
  36. Kite GC, Hetterscheid WLA, Lewis MJ, Boyce PC, Ollerton J, Cocklin E, Diaz A, Simmonds MSJ (1998) Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp 295–315. doi: 10.1007/s10886-015-0568-8 Google Scholar
  37. Knudsen JT, Gershenzon J (2006) The chemical diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 27–44. doi: 10.1201/9781420004007.ch2 Google Scholar
  38. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120. doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 CrossRefGoogle Scholar
  39. Kuanprasert N, Kuehnle AR, Tang CS (1998) Floral fragrance compounds of some Anthurium (Araceae) species and hybrids. Phytochemistry 49:521–528. doi: 10.1016/S0031-9422(98)00088-0 CrossRefGoogle Scholar
  40. Kumano Y, Yamaoka R (2006) Synchronization between temporal variation in heat generation, floral scents and pollinator arrival in the beetle-pollinated tropical Araceae, Homalomena propinqua. Pl Spec Biol 21:173–183. doi: 10.1007/s10265-008-0204-6 CrossRefGoogle Scholar
  41. Kumano-Nomura Y, Yamaoka R (2009) Beetle visitations, and associations with quantitative variation of attractants in floral odors of Homalomena propinqua (Araceae). J Pl Res 122:183–192. doi: 10.1007/s10265-008-0204-6 CrossRefGoogle Scholar
  42. Levin RA, Raguso RA, McDade LA (2001) Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry 58:429–440. doi: 10.1016/S0031-9422(01)00257-6 CrossRefPubMedGoogle Scholar
  43. Low SL, Wong SY, Boyce PC (2014) Schottarum (Schismatoglottideae: Araceae) substantiated based on combined nuclear and plastid DNA sequences. Pl Syst Evol 300:607–617. doi: 10.1007/s00606-013-0906-7 CrossRefGoogle Scholar
  44. Low SL, Wong SY, Ooi IH, Hesse M, Städler Y, Schönenberger J, Boyce PC (2016) Floral diversity and pollination strategies of three rheophytic Schismatoglottideae (Araceae). Pl Biol 18:84–97. doi: 10.1111/plb.12320 CrossRefGoogle Scholar
  45. Maia ACD, Schlindwein C, Navarro DMAF, Gibernau M (2010) Pollination of Philodendron acutatum (Araceae) in the atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. Int J Pl Sci 171:740–748. doi: 10.1086/654846 CrossRefGoogle Scholar
  46. Maia ACD, Dötterl S, Kaiser R, Silberbauer-Gottsberger I, Teichert H, Gibernau M, Navarro DMAF, Schlindwein C, Gottsberger G (2012) The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J Chem Ecol 38:1072–1080. doi: 10.1007/s10886-012-0173-z PubMedGoogle Scholar
  47. Maia ACD, Gibernau M, Carvalho AT, Gonçalves EG, Schlindwein C (2013a) The cowl does not make the monk: scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae: Spathicarpeae). Bot J Linn Soc 108:22–34. doi: 10.1111/j.1095-8312.2012.01985.x CrossRefGoogle Scholar
  48. Maia ACD, Gibernau M, Dötterl S, Navarro DMAF, Seifert K, Müller T, Schlindwein C (2013b) The floral scent of Taccarum ulei (Araceae): Attraction of scarab beetle pollinators to an unusual aliphatic acyloin. Phytochemistry 93:71–78CrossRefPubMedGoogle Scholar
  49. Mayo SJ (1991) A revision of Philodendron subgenus Meconostigma (Araceae). Kew Bull 46(4):601–681. doi: 10.2307/4110410 CrossRefGoogle Scholar
  50. Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal Botanic Gardens, KewGoogle Scholar
  51. Miyake T, Yafuso M (2003) Floral scent affect reproductive success in fly-pollinated Alocasia odora (Araceae). Amer J Bot 90:370–376. doi: 10.3732/ajb.90.3.370 CrossRefGoogle Scholar
  52. Miyake T, Yafuso M (2005) Pollination of Alocasia cucullata (Araceae) by two Colocasiomyia flies known to be specific pollinators for Alocasia odora. Pl Spec Biol 20:201–208. doi: 10.1111/j.1442-1984.2005.00139.x CrossRefGoogle Scholar
  53. Miyake T, Yahara T (1998) Why does the flower of Lonicera japonica open at dusk? Canad J Bot 76:1806–1811. doi: 10.1139/b98-119 CrossRefGoogle Scholar
  54. Miyake T, Yahara T (1999) Theoretical evaluation of pollen transfer by nocturnal and diurnal pollinators: when should a flower open? Oikos 86:233–240. doi: 10.2307/3546441 CrossRefGoogle Scholar
  55. Patt JM, French JC, Schal C, Lech J, Hartman TG (1995) The pollination biology of tuckahoe, Peltandra virginica (Araceae). Amer J Bot 82:1230–1240. doi: 10.2307/2446245 CrossRefGoogle Scholar
  56. Pellmyr O, Thien LB (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35:76–85. doi: 10.1016/j.bse.2015.05.007 CrossRefGoogle Scholar
  57. Pellmyr O, Tang W, Groth I, Bergström G, Thien BL (1991) Cycad cone and angiosperm floral volatiles: inferences for the evolution of insect pollination. Biochem Syst Ecol 19:623–627. doi: 10.1016/0305-1978(91)90078-E CrossRefGoogle Scholar
  58. Pereira J, Schlindwein C, Antonini Y, Maia ACD, Dötterl S, Martins C, Navarro DMAF, Oliveira R (2014) Philodendron adamantinum (Araceae) lures its single cyclocephaline scarab pollinator with specific dominant floral scent volatiles. Biol J Linn Soc 111:679–691. doi: 10.1111/bij.12232 CrossRefGoogle Scholar
  59. Porter AEA, Griffiths DW, Robertson GW, Sexton R (1999) Floral volatiles of sweet pea Lathyrus odoratus. Phytochemistry 51:211–214. doi: 10.1016/S0031-9422(98)00755-9 CrossRefGoogle Scholar
  60. Quilichini A, Macquart D, Barabé D, Jérôme A, Gibernau M (2010) Reproduction of the West Mediterranean endemic Arum pictum (Araceae) on Corsica. Pl Syst Evol 287:179–187. doi: 10.1007/s00606-010-0312-3 CrossRefGoogle Scholar
  61. Raguso RA (2001) Floral scent, olfaction, and scent-driven foraging behavior. In: Chittka L, Thomson DJ (eds) Cognitive ecology of pollination. Animal behavior and floral evolution. Cambridge University Press, Cambridge, pp 91–92. doi: 10.1017/CBO9780511542268.006 Google Scholar
  62. Raguso RA, Pellmyr O (1998) Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81:238–254. doi: 10.2307/3547045 CrossRefGoogle Scholar
  63. Ramirez N, Seres A (1994) Plant reproductive biology of herbaceous monocots in a Venezuelan tropical cloud forest. Pl Syst Evol 190:129–142. doi: 10.1007/BF00986189 CrossRefGoogle Scholar
  64. Schwerdtfeger M, Gerlach G, Kaiser R (2002) Anthecology in the neotropical genus Anthurium (Araceae): a preliminary report. Selbyana 23:258–267. doi: 10.2307/41760124 Google Scholar
  65. Seymour RS, White CR, Gibernau M (2003) Environmental biology: heat reward for insect pollinators. Nature 426:243–244. doi: 10.1038/426243a CrossRefPubMedGoogle Scholar
  66. Skubatz H, Kunkel DS, Howald NW, Trenkle R, Mookherjee B (1996) The Sauromatum guttatum appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness to insects. New Phytol 134:631–640. doi: 10.1111/j.1469-8137.1996.tb04928.x CrossRefGoogle Scholar
  67. Sultana F, Hu YG, Toda MJ, Takenaka K, Yafuso M (2006) Phylogeny and classification of Colocasiomyia (Diptera, Drosophilidae), and its evolution of pollination mutualism with aroid plants. Syst Entomol 31:684–702. doi: 10.1111/j.1365-3113.2006.00344.x CrossRefGoogle Scholar
  68. Takano TK, Repin R, Mohamed MB, Toda MJ (2012) Pollination mutualism between Alocasia macrorrhizos (Araceae) and two taxonomically undescribed Colocasiomyia species (Diptera: Drosophilidae) in Sabah, Borneo. Pl Biol 14:555–564. doi: 10.1111/j.1438-8677.2011.00541.x CrossRefGoogle Scholar
  69. Toda MJ, Lakim MB (2011) Genus Colocasiomyia (Drosophilidae: Diptera) in Sabah, Bornean, Malaysia: high species diversity and use of host aroid inflorescences. J Entomol Sci 14:262–270. doi: 10.1111/j.1479-8298.2011.00452.x CrossRefGoogle Scholar
  70. Tung LS, Wong SY, Boyce PC (2010) Studies on Homalomeneae (Araceae) of Borneo VI: Homalomena giamensis L.S.Tung, S.Y.Wong & P.C.Boyce (Araceae: Homalomeneae), a new species from Sarawak, Malaysian Borneo, with observations on its pollination. Aroideana 33:201–211Google Scholar
  71. Urru I, Stökl J, Linz J, Krügel T, Stensmyr MC, Hansson BS (2010) Pollination strategies in Cretan Arum lilies. Bot J Linn Soc 101:991–1001. doi: 10.1111/j.1095-8312.2010.01537.x CrossRefGoogle Scholar
  72. Vogel S, Martens J (2000) A survey of the function of the lethal kettle traps of Arisaema (Araceae), with records of pollinating fungus gnats from Nepal. Bot J Linn Soc 133:61–100. doi: 10.1111/j.1095-8339.2000.tb01537.x CrossRefGoogle Scholar
  73. Wong SY (2012) Studies on Schismatoglottideae (Araceae) of Borneo XXI: Two New Species of Schismatoglottis calyptrata Group: Schismatoglottis heterodoxa and Schismatoglottis ranchanensis. Willdenowia 42:255–260. doi: 10.3372/wi.42.42210 CrossRefGoogle Scholar
  74. Wong SY (2013) Rheophytism in Bornean Schismatoglottideae (Araceae). Syst Bot 38:32–45. doi: 10.1600/036364413X661908 CrossRefGoogle Scholar
  75. Wong SY, Boyce PC (2010) Studies on Schismatoglottideae (Araceae) of Borneo XI: Ooia, a new genus and a new generic delimitation of Piptospatha. Bot Stud (Taipei) 51:542–552Google Scholar
  76. Wong SY, Boyce PC (2014) Studies on Schismatoglottideae (Araceae) of Borneo XXX—new species and combinations for Bucephalandra. Willdenowia 44:149–199. doi: 10.3372/wi.44.44201 CrossRefGoogle Scholar
  77. Wong SY, Boyce PC, Othman AS, Leaw CP (2010) Molecular phylogeny of tribe Schimatoglottidae based on two plastid markers and recognition of a new tribe, Philonotieae, from the neotropics. Taxon 59:117–124Google Scholar
  78. Wong SY, Hoe YC, Boyce PC (2016) Studies on Schismatoglottideae (Araceae) of Borneo LIX—a preliminary conspectus of Schismatoglottis Calyptrata Complex Clade species for Sarawak. Aroideana 39 (in press) Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Plant Science and Environmental Ecology, Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakSamarahanMalaysia
  2. 2.Tunku Abdul Rahman University CollegeSegamatMalaysia
  3. 3.Harvard University HerbariaCambridgeUSA

Personalised recommendations