Advertisement

Plant Systematics and Evolution

, Volume 302, Issue 8, pp 1083–1091 | Cite as

Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism

  • Maja Al-Beyroutiová
  • Miroslav Sabo
  • Patrik Sleziak
  • Roman Dušinský
  • Erik Birčák
  • Pavol Hauptvogel
  • Andrzej Kilian
  • Miroslav ŠvecEmail author
Original Article

Abstract

Till this day, there is not much known about the phylogeny of the Secale genus; therefore, in our research, we tried to shed some lights on the issue of rye (Secale genus) taxonomy. The genetic diversity and phylogenetic relationships were evaluated using 13,842 DArTseq™ polymorphic markers. The model-based clustering (STRUCTURE software) separated our 84 samples into three main clusters: perennial cluster, annual cluster, and S. sylvestre cluster. The same result was obtained using Neighbour Joining tree and self-organizing maps. Secale sylvestre, S. strictum, and S. cereale are the three main species of the Secale genus. Three samples of rye are in basal positions in phylogenetic trees. These accessions share ancient morphological characters and are probably the ancestors of different lineages within Secale. Annual Secale taxa, with the exception of S. sylvestre, create one mutual taxon. We have found out that the semi-perennial taxa of S. cereale var. multicaule and S. strictum subsp. ciliatoglume are genetically closest to the annual species of S. cereale. Phylogenetic signals for semi-perennial and annual taxa are also present in S. strictum subsp. africanum. SNP-based analysis revealed that evolution of annual S. cereale has already begun in S. strictum subsp. africanum. The results showed that S. vavilovii cannot be considered as a separate species but a subspecies of S. cereale Secale cereale subsp. dighoricum is a hybrid. It is still not clear whether we can consider S. strictum subsp. strictum and S. strictum subsp. kuprijanovii as two separate species.

Keywords

DArTseq™ DNA polymorphism Genetic diversity Phylogenetic relationship Secale 

Notes

Acknowledgments

This paper was supported by the Slovak Research and Development Agency under the Contracts No. APVV-0197-10 and No. APVV-0661-10.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2016_1318_MOESM1_ESM.pdf (63 kb)
Online Resource 1. List of used accessions with place of origin and gene bank name (PDF 62 kb)
606_2016_1318_MOESM2_ESM.pdf (87 kb)
Online Resource 2. Estimating Maximum Likelihood (lnL) and hybrid index (h) for the hybrid accessions, their presumed and potential parents, using FAMD program (PDF 86 kb)
606_2016_1318_MOESM3_ESM.pdf (179 kb)
Online Resource 3. Super network phylogram of Secale genus accessions generated using Splits Tree software (PDF 178 kb)
606_2016_1318_MOESM4_ESM.pdf (68 kb)
Online Resource 4. The U matrix for the variables (i.e., 59 Secale accessions) (PDF 67 kb)
606_2016_1318_MOESM5_ESM.pdf (562 kb)
Online Resource 5. Photo of tillering plants of MON1, and MON3 accessions (PDF 561 kb)
606_2016_1318_MOESM6_ESM.pdf (43 kb)
Online Resource 6. Maximum likelihood phylogram of Secale genus accessions generated using SNPhylo software from SNPs data with 500 bootstraps (PDF 42 kb)

References

  1. Albert V, Jonsson B, Bernatchez L (2006) Natural hybrids in Atlanticeels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Molec Ecol 15:1903–1916. doi: 10.1111/j.1365-294X.2006.02917.x CrossRefGoogle Scholar
  2. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J et al (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516. doi: 10.1038/35035083 CrossRefPubMedGoogle Scholar
  3. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. doi: 10.1371/journal.pone.0003376 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolibok-Brągoszewska H, Targońska M, Bolibok L, Kilian A, Rakoczy-Trojanowska M (2014) Genome-wide characterization of genetic diversity and population structure in Secale. BMC Pl Biol 14:184. doi: 10.1186/1471-2229-14-184 CrossRefGoogle Scholar
  5. Chikmawati T, Skovmand B, Gustafson JP (2005) Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome 48:792–801. doi: 10.1139/g05-043 CrossRefPubMedGoogle Scholar
  6. Chikmawati T, Miftahudin, Gustafson JP (2013) Rye (Secale cereale L.) and wheat (Triticum aestivum L.) simple sequence repeat variation within Secale spp. (Poaceae). J Biosci 20:163–170. doi: 10.4308/hjb.20.4.163 Google Scholar
  7. Courtois B, Audebert A, Dardou A, Roques S, Ghneim- Herrera T et al (2013) Genome-Wide association mapping of root traits in a Japonica rice panel. PLoS ONE 8:e78037. doi: 10.1371/journal.pone.0078037 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cruz VM, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS ONE 8:e64062. doi: 10.1371/journal.pone.0064062 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cuadrado A, Jouve N (2002) Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J Heredity 93:339–345. doi: 10.1093/jhered/93.5.339 CrossRefGoogle Scholar
  10. Cvelev NN (1976) Zlaki SSSR [In Russian]. Nauka, LeningradGoogle Scholar
  11. De Bustos A, Jouve N (2002) Phylogenetic relationships of the genus Secale based on the characterisation of rDNA ITS sequences. Pl Syst Evol 235:147–154. doi: 10.1007/s00606-002-0215z CrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi: 10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  15. Felsenstein J (1989) PHYLIP-phylogeny inference package (Version 3.2). Cladistics 5:164–166Google Scholar
  16. Frederiksen S, Peterson G (1998) A taxonomy revision of Secale (Triticeae, Poceae). Nordic J Bot 18:399–420CrossRefGoogle Scholar
  17. Hammer K, Skolimowska E, Knüpffer H (1987) Vorarbeiten zur monographischen Darstellung von wildpflanzensortimenten: S. cereale L. Kulturpflanze 35:135–177CrossRefGoogle Scholar
  18. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267. doi: 10.1093/molbev/msj030 CrossRefPubMedGoogle Scholar
  19. Khush GS (1962) Cytogenetic and evolutionary studies in Secale. II. Interrelationships of the wild species. Evolution 16:484–496. doi: 10.2307/2406180 CrossRefGoogle Scholar
  20. Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C, Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Molec Biol 888:67–89. doi: 10.1007/978-1-61779-870-2_5 CrossRefGoogle Scholar
  21. Kobyljanskij VD (1975) K sistematike i filogenii roda Secale L. Byull Vsesoyuzn Inst Rast 48:64–71Google Scholar
  22. Kobyljanskij VD (1982) Rozh. Geneticheskije osnovy selekcii. Kolos, MoskvaGoogle Scholar
  23. Kobyljanskij VD (1983) The system of the genus Secale L [In Russian]. Trudy Prikl Bot 79:24–38Google Scholar
  24. Kohonen T (1997) Self-organizing maps, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  25. Kuckuck H (1956) Report to the government of Iran on the distribution and variation of cereals in Iran. FAO Report Rome 517:1–22Google Scholar
  26. Lecis R, Pierpaoli M, Biro ZS, Szemethy L, Ragni B, Vercillo F, Randi E (2006) Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Molec Ecol 15:119–131. doi: 10.1111/j.1365-294X.2005.02812.xV CrossRefGoogle Scholar
  27. Lee TH, Guo H, Wang X, Kim CH, Paterson AH (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom 15:162. doi: 10.1186/1471-2164-15-162 CrossRefGoogle Scholar
  28. Milczarski P, Bolibok-Brągoszewska H, Myskow B, Stojałowski S, Heller-Uszynska K (2011) A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS ONE 6:e28495. doi: 10.1371/journal.pone.0028495 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ostrowski MF, David J, Santoni S, Mckhann H, Reboud X, Lecorre V, Camilleri C, Drunel D, Bouchez D, Faure B, Bataillon T (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Molec Ecol 15:1507–1517. doi: 10.1111/j.1365-294X.2006.02865.x CrossRefGoogle Scholar
  30. Petersen SG (1997) Morphometrical analyses of Secale (Triticeae, Poaceae). Nordic J Bot 17:185–198. doi: 10.1111/j.1756-1051.1997.tb00309.x CrossRefGoogle Scholar
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  32. Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IAP, Batley J, Luckett DJ, Wratten N (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9:e101673. doi: 10.1371/journal.pone.0101673 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Reddy P, Appels R, Baum BR (1990) Ribosomal DNA spacer-length variation in Secale spp. (Poaceae). Pl Syst Evol 171:203–220. doi: 10.1007/BF00940606 CrossRefGoogle Scholar
  34. Ren TH, Chen F, Zou YT, Jia YH, Zhang HQ, Yan BJ, Ren ZL (2011) Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome 54:316–326. doi: 10.1139/g10-121 CrossRefPubMedGoogle Scholar
  35. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385. doi: 10.1126/science.1078311 CrossRefPubMedGoogle Scholar
  36. Roshevitz RY (1947) A monograph of the wild weedy and cultivated species of rye. Acta Inst Bot Acad Sci USSR Ser 16:105–163Google Scholar
  37. Schlegel R, Korzun V (2013) Genes markers and linkage data of rye (Secale cereale L.), 9th updated inventory. Available at: http://www.rye-gene-map.de. Accessed 19 Nov 2014
  38. Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. doi: 10.1093/bioinformatics/btq706 CrossRefPubMedGoogle Scholar
  39. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572. doi: 10.1111/j.1471-8286.2006.01225.x CrossRefGoogle Scholar
  40. Shang HY, Wei YM, Wang XR, Zheng YL (2006) Genetic diversity and phylogenetic relationships in rye genus S. cereale L. (rye) based on Secale cereale microsatelite markers. Genet Molec Biol 29:865–873. doi: 10.1590/S1415-47572006000400018 CrossRefGoogle Scholar
  41. Singh R, Röbbelen G (1977) Identification by Giemsa technique of translocations separating cultivated rye from three wild species of Secale. Chromosoma 59:217–229CrossRefGoogle Scholar
  42. Vavilov NI (1926) Studies on the origin of cultivated plants [In Russian]. Bull Appl Bot Pl Breed 14:1–245Google Scholar
  43. Vences FJ, Vaquero F, Perez de la Vega M (1987) Phylogenetic relationships in Secale: an isozymatic study. Pl Syst Evol 157:33–47. doi: 10.1007/BF00939179 CrossRefGoogle Scholar
  44. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM Toolbox for Matlab 5. Available at: http://www.cis.hut.fi/proyects/somtoolbox/

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Maja Al-Beyroutiová
    • 1
  • Miroslav Sabo
    • 2
  • Patrik Sleziak
    • 3
  • Roman Dušinský
    • 1
  • Erik Birčák
    • 1
  • Pavol Hauptvogel
    • 4
  • Andrzej Kilian
    • 5
  • Miroslav Švec
    • 1
    Email author
  1. 1.Department of Genetics, Faculty of Natural SciencesComenius University in BratislavaMlynská Dolina, BratislavaSlovakia
  2. 2.Faculty of Social and Economic SciencesComenius UniversityBratislavaSlovakia
  3. 3.Faculty of Civil EngineeringSlovak University of Technology in BratislavaBratislavaSlovakia
  4. 4.National Agricultural and Food CentreResearch Institute of Plant ProductionPiešťanySlovakia
  5. 5.Diversity Array Technology Pty Ltd.University of CanberraBruceAustralia

Personalised recommendations