Advertisement

Plant Systematics and Evolution

, Volume 302, Issue 6, pp 721–730 | Cite as

Microsatellite markers reveal common East Alpine–Carpathian gene pool for the arctic–alpine Rhodiola rosea (Crassulaceae)

  • Zsuzsanna GyörgyEmail author
  • José F. Vouillamoz
  • Mária Höhn
Original Article

Abstract

Rhodiola rosea L. is an arctic–alpine perennial species. Genetic structure and relationships of 16 populations from the high mountains of Europe have been characterized by the use of microsatellite markers. Mean expected heterozygosity (He) was 0.73, ranging from 0.51 to 0.74 in the populations studied. The genetic relationships among the populations revealed by both UPGMA and STRUCTURE analysis showed a clear clustering of the five Swiss Alps populations being well separated from all other populations. Next to these—also forming a distinct cluster—the populations from the Pyrenees were located. Another cluster contained the admixed group of individuals from Alpine and Carpathian populations including the Tatras. Norwegian samples were sister to the Alpine–Carpathian group and interestingly, the population from the Italian Dolomites showed a clearly distinct position. AMOVA revealed that the vast majority of the molecular variance was attributed to within-population variability (85 %) while only 11 % was among population variation, and 4 % among region variation. The weak genetic differentiation observed between the Eastern Alpine and Carpathian populations supports the existence of a former common glacial refugium and a shared history between the two regions.

Keywords

Arctic–alpine species Biogeography Genetic diversity Glacial refugium Microsatellites Roseroot 

Notes

Acknowledgments

This study was financed by the Hungarian Scientific Research Fund (OTKA 83728) and the National Development Agency (TÁMOP-4.2.1/B-09/1/KMR-2010-0005 and TÁMOP-4.2.2/B-10/1-2010-0023). Zsuzsanna György is grateful for the Award for Research Excellence of Corvinus University of Budapest and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Conflict of interest

There is no conflict of interests.

References

  1. Abbott RJ, Smith LC, Milne RI, Crawford RMM, Wolff K, Balfour J (2000) Molecular analysis of plant migration and refugia in the Arctic. Science 289:1343–1346. doi: 10.1126/science.289.5483.1343 CrossRefPubMedGoogle Scholar
  2. Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Global Ecol Biogeogr 18:223–239. doi: 10.1111/j.1466-8238.2008.00439.x CrossRefGoogle Scholar
  3. Brown RP, Gerbarg PL, Ramazanov Z (2002) Rhodiola rosea, a phytomedicinal overview. HerbalGram 56:40–52Google Scholar
  4. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resources 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  5. Elameen A, Klemsdal SS, Dragland S, Fjellheim S, Rognli OA (2008) Genetic diversity in a germplasm collection of roseroot (Rhodiola rosea) in Norway studied by AFLP. Biochem Syst Ecol 36:706–715. doi: 10.1016/j.bse.2008.07.009 CrossRefGoogle Scholar
  6. Feurdean A, Wohlfarth B, Bjökman L, Björkman C, Tantau I, Bennike E, Willis JA, Farcas S, Robertsson AM (2007) The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Rev Paleobot Palynol 145:305–320. doi: 10.1016/j.revpalbo.2006.12.004 CrossRefGoogle Scholar
  7. Gontcharova SB, Gontcharov AA, Yakubov VV, Kondo K (2009) Seed surface morphology in some representatives of the genus Rhodiola sect. Rhodiola (Crassulaceae) in the Russian Far East. Flora 204:17–24. doi: 10.1016/j.flora.2008.01.009 CrossRefGoogle Scholar
  8. Gottfried M, Pauli H, Reiter K, Grabherr G (1999) A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Diversity Distrib 5:241–251. doi: 10.1046/j.1472-4642.1999.00058.x CrossRefGoogle Scholar
  9. György Z, Szabó M, Bacharov D, Pedryc A (2012) Genetic diversity within and among populations of roseroot (Rhodiola rosea L.) based on molecular markers. Not Bot Horti Agrobo 40:266–273Google Scholar
  10. György Z, Vouillamoz JF, Ladányi M, Pedryc A (2014) Genetic survey of Rhodiola rosea L. populations from the Swiss Alps based on SSR markers. Biochem Syst Ecol 54:137–143. doi: 10.1016/j.bse.2014.01.012 CrossRefGoogle Scholar
  11. Hegi G (1963) Rhodiola, Rosenwurz. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa, Zweite völlig neubearbeitete Auflage, Band IV/2, Lieferung 2/3. Paul Parey, Hamburg, Berlin, pp 99–102Google Scholar
  12. Höhn M, Gugerli F, Abran P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Quintela-Sabarís C, Sebastiani F, Vendramin GG (2009) Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the Alps. J Biogeogr 36(9):1798–1806. doi: 10.1111/j.1365-2699.2009.02122.x CrossRefGoogle Scholar
  13. Holderegger R, Stehlik I, Abbott RJ (2002) Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps. Molec Ecol 11:1409–1418. doi: 10.1046/j.1365-294X.2002.01548.x CrossRefGoogle Scholar
  14. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molec Ecol Resources 9:1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x CrossRefGoogle Scholar
  15. Kozyrenko M, Gontcharova SB, Gontcharov AA (2011) Analysis of the genetic structure of Rhodiola rosea (Crassulaceae) using inter-simple sequence repeat (ISSR) polymorphisms. Flora 206:691–696. doi: 10.1016/j.flora.2010.12.002 CrossRefGoogle Scholar
  16. Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Molec Ecol 12:931–949. doi: 10.1046/j.1365-294X.2003.01781.x CrossRefGoogle Scholar
  17. Kropf M, Comes HP, Kadereit JW (2006) Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol 172:169–184. doi: 10.1111/j.1469-8137.2006.01795.x CrossRefPubMedGoogle Scholar
  18. Kylin M (2010) Genetic diversity of roseroot (Rhodiola rosea L.) from Sweden, Greenland and Faroe islands. Dissertation, Swedish University of Agricultural Sciences (Alnarp), SwedenGoogle Scholar
  19. Lei Y, Gao H, Tsering T, Shi S, Zhong Y (2006) Determination of genetic variation in Rhodiola crenulata from the Hengduan Mountains Region, China using inter-simple sequence repeats. Genet Molec Biol 29:339–344. doi: 10.1590/S1415-47572006000200023 CrossRefGoogle Scholar
  20. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  21. Ozenda P (2009) On the genesis of the plant population in the Alps: new or critical aspects. Compt Rend Biol 332:1092–1103. doi: 10.1016/j.crvi.2009.09.018 CrossRefGoogle Scholar
  22. Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 17:481–493. doi: 10.1016/j.phymed.2010.02.002 CrossRefPubMedGoogle Scholar
  23. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi: 10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pritchard JK, Stephens M, Donnelly P (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  25. Puscas M, Choleri P, Tribsch A, Gielly L, Rioux D, Gaudeul M, Taberlet P (2008) Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Molec Ecol 17:2417–2429. doi: 10.1111/j.1365-294X.2008.03751.x CrossRefGoogle Scholar
  26. Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60:373–389Google Scholar
  27. Ronikier M, Costa A, Aguilar JF, Feliner GN, Küpfer P, Zbigniew Z (2008) Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia. J Biogeogr 35:1650–1664. doi: 10.1111/j.1365-2699.2008.01907.x CrossRefGoogle Scholar
  28. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Molec Ecol 14(11):3547–3555. doi: 10.1111/j.1365-294X.2005.02683.x CrossRefGoogle Scholar
  29. Skrede I, Eidesen PB, Portela RP, Brochmann C (2006) Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molec Ecol 15:1827–1840. doi: 10.1111/j.1365-294X.2006.02908.x CrossRefGoogle Scholar
  30. Stehlik I (2003) Resistance or emigration? Response of alpine plants to the ice ages. Taxon 52:499–510. doi: 10.2307/3647448 CrossRefGoogle Scholar
  31. Tiel-Egenter C, Gugerli F, Alvarez N, Brodbeck S, Cieslak E, Colli L, Englisch T, Gaudeul M, Gielly L, Korbecka G, Negrini R, Pau O, Pellecchia M, Rioux D, Ronikier M, Schönswetter P, Schüpfer F, Taberlet P, Tribsch A, van Loo M, Winkler M, Holderegger R, the IntraBioDiv Cons (2009) Effects of species traits on the genetic diversity of high mountain plants: a multi-species study across the Alps and the Carpathians. Global Ecol Biogeogr 18:78–87. doi: 10.1111/j.1466-8238.2008.00421.x CrossRefGoogle Scholar
  32. Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52:477–497. doi: 10.2307/3647447 CrossRefGoogle Scholar
  33. Winkler M, Tribsch A, Schneeweiss GM, Bordbeck S, Gugerli F, Holderegger R, Abbotts RJ, Schönswetter P (2012) Tales of the unexpected: phylogeography of the arctic-alpine model plant Saxifraga oppositifolia (Saxifragaceae) revisited. Molec Ecol 21:4618–4630. doi: 10.1111/j.1365-294X.2012.05705.x CrossRefGoogle Scholar
  34. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, EdmontonGoogle Scholar
  35. You J, Liu W, Zhao Y, Zhu Y, Zhang W, Wang Y, Lu F, Song Z (2013) Microsatellite markers in Rhodiola (Crassulaceae), a medicinal herb genus widely used in traditional Chinese medicine. Appl Pl Sci 1(3):1200219. doi: 10.3732/apps.1200219 Google Scholar
  36. Zini E, Clamer M, Passerotti S, Vender C, Vendramin GG, Komjanc M (2009) Eight novel microsatellite DNA markers in Rhodiola rosea L. Conservation Genet 10:1397–1399. doi: 10.1007/s10592-008-9704-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Zsuzsanna György
    • 1
    Email author
  • José F. Vouillamoz
    • 2
  • Mária Höhn
    • 3
  1. 1.Department of Genetics and Plant BreedingSzent István EgyetemBudapestHungary
  2. 2.Agroscope, Institute for Plant Production Sciences IPSContheySwitzerland
  3. 3.Department of BotanySzent István EgyetemBudapestHungary

Personalised recommendations