Plant Systematics and Evolution

, Volume 302, Issue 5, pp 545–559 | Cite as

Of dwarfs and giants: phylogeny of the Petasites-clade (Asteraceae–Senecioneae) and evolution of miniaturization in arctic–alpine environments

  • Simone Steffen
  • Markus S. DillenbergerEmail author
  • Joachim W. Kadereit
Original Article


Decreasing plant size with increasing latitude or altitude is a commonly observed pattern. Among the four genera of the Petasites-clade (Asteraceae–Senecioneae), Petasites and Tussilago, widespread throughout the Northern Hemisphere, mostly have large leaves and many capitula, whereas Homogyne and Endocellion from alpine and arctic environments have much smaller leaves and only one or few capitula. We present a comprehensively sampled and dated phylogeny of Petasites, Endocellion, Homogyne and Tussilago based on nuclear ribosomal ITS and plastid ndhF-rpl32 and rpl32-trnL sequences. The four genera form a well-supported monophyletic group. Endocellion was found to be nested in Petasites, and relationships among the other three genera remain unresolved. Dwarfism with small leaves and a reduced number of capitula evolved five times in arctic–alpine species of this group. Although all dwarf species of the Petasites-clade grow in arctic or alpine habitats, not all species from such habitats are dwarfs. In the European Alps, Homogyne alpina, H. discolor and Petasites paradoxus occur in (sub-)alpine habitats, but only the species of Homogyne are dwarfs with small leaves and only one flowering head, whereas P. paradoxus has much larger leaves and numerous capitula. These species differ in ecology: whereas Homogyne is found in nutrient-poor and stable habitats, P. paradoxus grows in nutrient-rich and often disturbed habitats. We conclude that although decreasing plant size with increasing latitude or altitude is an overall trend in the group, factors such as nutrient availability and/or habitat disturbance can counteract this trend.


Arctic–alpine plants Dwarfism Evolution Petasites Tussilagininae 



We are grateful to the curators of the following herbaria for permission to take leaf material for DNA analysis: B, HAST, M, O, PE, PGFA, PMR, VLA and WU. E. Boyko (Vladivostok) is acknowledged for kindly donating herbarium specimens and providing information. We thank D. Franke and M. Geyer (both Mainz) for help with the illustrations and A.J. Moore (Providence) for helpful comments on an earlier version of the manuscript. Two anonymous reviewers are gratefully acknowledged for helpful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2016_1282_MOESM1_ESM.nex (135 kb)
Supplementary material 1 (NEX 135 kb)
606_2016_1282_MOESM2_ESM.pdf (62 kb)
Supplementary material 2 (PDF 62 kb)
606_2016_1282_MOESM3_ESM.pdf (58 kb)
Supplementary material 3 (PDF 57 kb)


  1. Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora Alpina. Haupt, BernGoogle Scholar
  2. Barkley TM (2006) Tussilago. In: Flora of North America Editorial Committee (eds) Flora of North America vol. 20, Oxford University Press, New York, p 635Google Scholar
  3. Bayer RJ, Bogle AL, Cherniawsky DM (2006) Petasites. In: Flora of North America Editorial Committee (eds) Flora of North America vol. 20, Oxford University Press, New York, pp 635–640Google Scholar
  4. Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529CrossRefGoogle Scholar
  5. Blattner F (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques 27:1180–1186PubMedGoogle Scholar
  6. Bliss LC (1971) Arctic and alpine plant life cycles. Annual Rev Ecol Syst 2:405–438CrossRefGoogle Scholar
  7. Bogle AL (1968) Evidence for the hybrid origin of Petasites warrenii and P. vitifolius. Rhodora 70:533–551Google Scholar
  8. Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, Portland, OregonGoogle Scholar
  9. Chen YL, Nordenstam B, Jeffrey C, Koyama HH, Funston M, Vincent L (2011) Asteraceae tribe Senecioneae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China vols. 20–21, Science Press, Beijing, and Missouri Botanical Garden Press, St. LouisGoogle Scholar
  10. Cherniawsky DM, Bayer RJ (1998) Systematics of North American Petasites (Asteraceae: Senecioneae). III. A taxonomic revision. Canad J Botany 76:2061–2075. doi: 10.1139/b98-151 Google Scholar
  11. Dingwall I (1976) Petasites. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walter SM, Webb DA (eds) Flora Europaea, vol 4. Cambridge University Press, Cambridge, pp 186–188Google Scholar
  12. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi: 10.1186/1471-2148-7-214 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, StuttgartGoogle Scholar
  14. Fischer MA, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein, Südtirol, 3rd edn. Biologiezentrum der Oberösterreichischen Landesmuseen, LinzGoogle Scholar
  15. Hegi G (1929) Illustrierte Flora von Mitteleuropa. Mit besonderer Berücksichtigung von Deutschland, Oesterreich und der Schweiz. Zum Gebrauche in den Schulen und zum Selbstunterricht, VI. Band, 2. Hälfte. Lehmanns Verlag, MünchenGoogle Scholar
  16. Hind N, Kay J (2006) A nature print of Petasites japonicus subsp. giganteus. Curtis's Bot Mag 23:325–341. doi: 10.1111/j.1467-8748.2006.00547.x CrossRefGoogle Scholar
  17. Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  18. Johnson PL (1969) Arctic plants, ecosystems and strategies. Arctic 22:341–355Google Scholar
  19. Kay K, Whittall J, Hodges S (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36. doi: 10.1186/1471-2148-6-36 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Molec Evol 16:111–120CrossRefPubMedGoogle Scholar
  21. Kokubugata G, Nakamura K, Shinohara W, Saito Y, Peng C-I, Yokota M (2010) Evidence of three parallel evolutions of leaf dwarfism and phytogeography in Lysimachia sect. Nummularia in Japan and Taiwan. Molec Phylogen Evol 54:657–663. doi: 10.1016/j.ympev.2009.09.004 CrossRefGoogle Scholar
  22. Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinGoogle Scholar
  23. Körner C, Larcher W (1988) Plant life in cold climates. Plants and temperature. In: Long SF, Woodward FI (eds) Symposia of the Society for Experimental Biology, vol 42. The Company of Biologists Ltd, Cambridge, pp 25–57Google Scholar
  24. Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182:353–383Google Scholar
  25. Kuprianova LA (2000) Genera Tussilago, Petasites, Nardosmia, Homogyne. In: Schischkin BK, Bobrov EG (eds) Flora of the USSR vol. 26, Smithsonian Institution Libraries, Washington, pp 609–624Google Scholar
  26. Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer K, Schweingruber FH, Theurillat J-P, Urmi E, Vust M, Wohlgemuth T (2010) Flora indicativa: Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt, BernGoogle Scholar
  27. Lanfear R, Calcott R, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molec Biol Evol 29:1695–1701. doi: 10.1093/molbev/mss020 CrossRefPubMedGoogle Scholar
  28. Liu S, Illarionova ID (2011) Asteraceae tribe Senecioneae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China vols. 20–21, Science Press, Beijing, and Missouri Botanical Garden Press, St. LouisGoogle Scholar
  29. Maddison DR, Maddison WP (2000) MacClade 4.0: analysis of phylogeny and character evolution. Sinauer Assoc., SunderlandGoogle Scholar
  30. Maddison WP, Maddison DR (2006) StochChar: a package of Mesquite modules for stochastic models of character evolution. Version 1.1Google Scholar
  31. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available at: Accessed 14 March 2013
  32. Merxmüller H (1952) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Teil 1. Jahrb Vereins Schutze Alpenpfl 17:96–133Google Scholar
  33. Meusel H, Jäger E (1992) Vergleichende Chorologie der zentraleuropäischen Flora, vol 3. Fischer, JenaGoogle Scholar
  34. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), 14 Nov. 2010, New Orleans, pp 1–8Google Scholar
  35. Muir G, Fleming CC, Schlötterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Molec Biol Evol 18:112–119CrossRefPubMedGoogle Scholar
  36. Nordenstam B (2007) Tribe Senecioneae. In: Kubitzki K, Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants, vol 8. Springer, Berlin, pp 208–241Google Scholar
  37. Ordoñez JC, van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol Biogeogr 18:137–149. doi: 10.1111/j.1466-8238.2008.00441.x CrossRefGoogle Scholar
  38. Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Fischer, StuttgartGoogle Scholar
  39. Pelser PB, Nordenstam B, Kadereit JW, Watson LE (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1077–1104CrossRefGoogle Scholar
  40. Pfeiffer T, Günzel C, Frey W (2008) Clonal reproduction, vegetative multiplication and habitat colonisation in Tussilago farfara (Asteraceae): a combined morpho-ecological and molecular study. Flora 203:281–291. doi: 10.1016/j.flora.2007.02.008 CrossRefGoogle Scholar
  41. Pirie MD, Humphreys AM, Galley C, Barker NP, Verboom GA, Orlovich D, Draffin SJ, Lloyd K, Baeza CM, Negritto M, Ruiz E, Cota Sanchez JH, Reimer E, Linder HP (2008) A novel supermatrix approach improves resolution of phylogenetic relationships in a comprehensive sample of danthonioid grasses. Molec Phylogen Evol 48:1106–1119. doi: 10.1016/j.ympev.2008.05.030 CrossRefGoogle Scholar
  42. Polunin N (1959) Circumpolar arctic flora. Oxford University Press, OxfordGoogle Scholar
  43. Rambaut A, Drummond AJ (2007) Tracer, version 1.5. MCMC Trace File Analyser. Computer program and documentation distributed by the authors. Available at: Accessed 22 Nov 2012
  44. Rambaut A, Drummond AJ (2009) TreeAnnotator, version 1.5.4. Available at: Accessed 23 Nov 2015
  45. Rodríguez F, Oliver JL, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theoret Biol 42:485–501. doi: 10.1016/S0022-5193(05)80104-3 CrossRefGoogle Scholar
  46. Shaw J, Lickey EB, Schilling EE, Smith RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288. doi: 10.3732/ajb.94.3.275 CrossRefGoogle Scholar
  47. Shinohara W, Murakami N (2006) How have the alpine dwarf plants in Yakushima been miniaturized? A comparative study of two alpine dwarf species in Yakushima, Blechnum nipponicum (Blechnaceae) and Lysimachia japonica (Primulaceae). J Pl Res 119:571–580. doi: 10.1007/s10265-006-0016-5 CrossRefGoogle Scholar
  48. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381CrossRefPubMedGoogle Scholar
  49. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771. doi: 10.1080/10635150802429642 CrossRefGoogle Scholar
  50. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinauer, Sunderland, MassachusettsGoogle Scholar
  51. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molec Biol Evol 10:512–526PubMedGoogle Scholar
  52. Tkach NV, Hoffmann MH, Röser M, Korobkov AA, von Hagen KB (2008) Parallel evolutionary patterns in multiple lineages of arctic Artemisia L. (Asteraceae). Evolution 62:184–198. doi: 10.1111/j.1558-5646.2007.00270.x PubMedGoogle Scholar
  53. Toman J (1972) A taxonomic survey of the genera Petasites and Endocellion. Folia Geobot Phytotax 7:381–406CrossRefGoogle Scholar
  54. Troll W (1939) Vergleichende Morphologie der höheren Pflanzen vol. 1(1), Vegetationsorgane. Borntraeger, BerlinGoogle Scholar
  55. Turesson G (1925) The plant species in relation to habitat and climate. Hereditas (Lund) 6:147–236CrossRefGoogle Scholar
  56. Turesson G (1930) The selective effect of climate upon the plant species. Hereditas (Lund) 14:99–152CrossRefGoogle Scholar
  57. Tutin TG (1976a) Homogyne. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walter SM, Webb DA (eds) Flora Europaea, vol 4. Cambridge University Press, Cambridge, pp 188–189Google Scholar
  58. Tutin TG (1976b) Tussilago. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walter SM, Webb DA (eds) Flora Europaea, vol 4. Cambridge University Press, Cambridge, p 186Google Scholar
  59. Vierhapper F (1923) Über Verwandtschaft und Herkunft der Gattungen Homogyne und Adenostyles. Österr Bot Z 73:150–164CrossRefGoogle Scholar
  60. Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis P, Doyle JJ (eds) Molecular systematics of plants II. Kluwer Academic Publishers, Boston, pp 265–296CrossRefGoogle Scholar
  61. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  62. Zhang M-L, Uhink CH, Kadereit JW (2007) Phylogeny and biogeography of Epimedium/Vancouveria (Berberidaceae): western North American—East Asian disjunctions, the origin of European mountain plant taxa, and East Asian species diversity. Syst Bot 32:81–92. doi: 10.1600/036364407780360265 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Simone Steffen
    • 1
  • Markus S. Dillenberger
    • 1
    Email author
  • Joachim W. Kadereit
    • 1
  1. 1.Institut für Spezielle Botanik und Botanischer GartenJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations