Plant Systematics and Evolution

, Volume 302, Issue 4, pp 419–431 | Cite as

Subfamilial and tribal relationships of Ranunculaceae: evidence from eight molecular markers

  • Guillaume Cossard
  • Julie Sannier
  • Hervé Sauquet
  • Catherine Damerval
  • Louis Ronse de Craene
  • Florian Jabbour
  • Sophie Nadot
Original Article

Abstract

The first molecular phylogenies of the flowering plant family Ranunculaceae were published more than twenty years ago, and have led to major changes in the infrafamilial classification. However, the current phylogeny is not yet well supported, and relationships among subfamilies and tribes of Ranunculaceae remain an open question. Eight molecular markers from the three genomes (nuclear, chloroplast and mitochondrial) were selected to investigate these relationships, including new markers for the family (two homologs of the nuclear CYCLOIDEA gene, the chloroplast gene ndhF, and the mitochondrial intron nad4-I1). The combination of multiple markers led to better resolution and higher support of phylogenetic relationships among subfamilies of Ranunculaceae, and among tribes within subfamily Ranunculoideae. Our results challenge the monophyly of Ranunculoideae as currently circumscribed due to the position of tribe Adonideae (Ranunculoideae), sister to Thalictroideae. We suggest that Thalictroideae could be merged with Ranunculoideae in an enlarged single subfamily.

Keywords

Adonideae CYC-like genes Phylogeny Ranunculaceae Ranunculoideae Thalictroideae 

Supplementary material

606_2015_1270_MOESM1_ESM.pdf (856 kb)
Online Resource 1. Voucher information and GenBank accession numbers of the sequences used in this study. PBL: Parc Botanique de Launay(F), JBL: Jardin Botanique de Lyon (France), JBVP: Jardin Botanique de la Ville de Paris (F), RBGE: Royal Botanic Garden Edinburgh (UK),BFAG: Betty Ford Alpine Gardens (USA, Colorado), ROST: Botanischer Garten Rostock (D), GEISS: Botanischer Garten Giessen (F), JS:collected by Julie Sannier (wild or commercial origin). Voucher information is given only for the newly generated sequences (PDF 856 kb)
606_2015_1270_MOESM2_ESM.pdf (1.7 mb)
Online Resource 2. List of primers used in this study and PCR conditions followed for mostof the samples (PDF 1696 kb)
606_2015_1270_MOESM3_ESM.pdf (3.2 mb)
Online Resource 3. Schematic representation of the DNA regions sequenced in this study andof the primers used.A. The matK region divided into three parts, 3’trnK-matK intron, matK gene and matK-5’trnKintron. B. The ndhF region. C. Part of the nad4-I1 intronic region. Coding parts are in gray,non-coding regions are represented by straight lines. Primers are represented by arrows. Theintron 1 of subunit IV of NADH dehydrogenase was only partially amplified. Dashed linessymbolise the rest of the intron. D. The CYCLOIDEA-like region with primers represented byarrows (PDF 3236 kb)
606_2015_1270_MOESM4_ESM.pdf (319 kb)
Online Resource 4. PMaximum likelihood tree obtained from the combined alignment of CYC1 and CYC2 sequences showing the two paralogous lineages (PDF 319 kb)
606_2015_1270_MOESM5_ESM.pdf (432 kb)
Online Resource 5. Bayesian inference cladogram of the Ranunculaceae obtained from the matK dataset.Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilies and tribes are according to the classification of Wang et al. (2009) (PDF 432 kb)
606_2015_1270_MOESM6_ESM.pdf (429 kb)
Online Resource 6. Bayesian inference cladogram of the Ranunculaceae obtained from the ndhF dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilial and tribal classification is based on Wang et al. (2009). Stars indicate nodes that are not found in ML tree (PDF 428 kb)
606_2015_1270_MOESM7_ESM.pdf (436 kb)
Online Resource 7. Bayesian inference cladogram of the Ranunculaceae obtained from the rbcL dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilial and tribal classification is based on Wang et al. (2009). Stars indicate nodes that are not found in ML tree (PDF 436 kb)
606_2015_1270_MOESM8_ESM.pdf (427 kb)
Online Resource 8. Bayesian inference cladogram of the Ranunculaceae obtained from the trnL dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilial and tribal classification is based on Wang et al. (2009). Stars indicate nodes that are not found in ML tree (PDF 427 kb)
606_2015_1270_MOESM9_ESM.pdf (434 kb)
Online Resource 9. Bayesian inference tree obtained from the combined analysis of all chloroplast markers (matK, ndhF, rbcL, trnL).Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and bootstrap percentages (>50%). Subfamilies and tribes are according to the classification of Wang et al. (2009). Stars indicate nodes that are not found in the ML tree (PDF 433 kb)
606_2015_1270_MOESM10_ESM.pdf (446 kb)
Online Resource 10. Bayesian inference cladogram of the Ranunculaceae obtained from the nad4-I1 dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilies and tribes are according to the classification of Wang et al. (2009) (PDF 446 kb)
606_2015_1270_MOESM11_ESM.pdf (417 kb)
Online Resource 11. Bayesian inference tree obtained from the ITS dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) andbootstrap percentages (>50%). Subfamilies and tribes are according to the classification ofWang et al. (2009). Stars indicate nodes that are not found in the ML tree (PDF 417 kb)
606_2015_1270_MOESM12_ESM.pdf (493 kb)
Online Resource 12. Bayesian inference tree obtained from the combined analysis of nuclearmarkers (ITS, RanaCYL1, RanaCYL2).Description: Numbers above branches are Bayesian posterior probabilities (>0.5) andbootstrap percentages (>50%). Bootstrap support values lower than 50% are replaced bydashes. Subfamilies and tribes are according to the classification of Wang et al. (2009). Starsindicate nodes that are not found in the ML tree (PDF 493 kb)
606_2015_1270_MOESM13_ESM.pdf (438 kb)
Online Resource 13. Bayesian inference phylogram obtained from the total evidence datasetincluding all markers.Description: Numbers above the branches are Bayesian posterior probabilities and bootstrappercentages (>50%). Subfamilies and tribes are according to the classification of Wang et al.(2009). Stars indicate nodes that are not found in ML tree (PDF 438 kb)

References

  1. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucl Acids Res 38:W7–13CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molec Biol Evol 20:255–266CrossRefPubMedGoogle Scholar
  3. APG (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Bot J Linn Soc 161:105–121Google Scholar
  4. Bartlett ME, Specht CD (2011) Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. Amer J Bot 98:227–243CrossRefGoogle Scholar
  5. Cai YF, Li SW, Liu Y, Quan S, Chen M, Xie YF, Jiang HZ, Wei EZ, Yin NW, Wang L, Zhang R, Huang CL, He XH, Jiang MF (2009) Molecular phylogeny of Ranunculaceae based on internal transcribed spacer sequences. African J Biotech 8:5215–5224Google Scholar
  6. Citerne H, Jabbour F, Nadot S, Damerval C (2010) The Evolution of floral symmetry. Advances Bot Res 54:85–137CrossRefGoogle Scholar
  7. Citerne H, Le Guilloux M, Sannier J, Nadot S, Damerval C (2013) Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLOS One 8:e74803CrossRefPubMedPubMedCentralGoogle Scholar
  8. Compton JA, Culham A, Jury SL (1998) Reclassification of Actaea to include Cimicifuga and Souliea (Ranunculaceae): phylogeny inferred from morphology, nrDNA ITS, and cpDNA trnL-F sequence variation. Taxon 47:593–634CrossRefGoogle Scholar
  9. Damerval C, Le Guilloux M, Jager M, Charon C (2007) Diversity and evolution of CYCLOIDEA-Like TCP genes in relation to flower development in Papaveraceae. Pl Physiol 143:759–772CrossRefGoogle Scholar
  10. Drummond JR, Hutchinson J (1920) A revision of Isopyrum (Ranunculaceae) and its nearer allies. Bull Misc Inform Kew 1920:145–169Google Scholar
  11. Emadzade K, Lehnebach C, Lockhart P, Horandl E (2010) A molecular phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae). Taxon 59:809–828Google Scholar
  12. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  13. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  14. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylo- genetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  15. Hodges SA (1997) Floral nectar spurs and diversification. Int J Pl Sci 158(Suppl S):S81–S88Google Scholar
  16. Hoot SB (1991) Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromorphology. Syst Bot 16:741–755CrossRefGoogle Scholar
  17. Hoot SB (1995) Phylogeny of the Ranunculaceae based on preliminary atpB, rbcL and 18S nuclear ribosomal DNA sequence data. Pl Syst Evol (Suppl 9):241–251Google Scholar
  18. Hoot SB, Kramer J, Arroyo Mary TK (2008) Phylogenetic position of the South American dioecious genus Hamadryas and related Ranunculeae (Ranunculaceae). Int J Pl Sci 169:433–443CrossRefGoogle Scholar
  19. Hoot SB, Meyer KM, Manning JC (2012) Phylogeny and reclassification of Anemone (Ranunculaceae), with an emphasis on Austral species. Syst Bot 37:139–152CrossRefGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic tree. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  21. Jabbour F, Renner SS (2011) Resurrection of the genus Staphisagria J. Hill, sister to all the other Delphinieae (Ranunculaceae). PhytoKeys 7:21–26CrossRefPubMedGoogle Scholar
  22. Jabbour F, Cossard G, Le Guilloux M, Sannier J, Nadot S, Damerval C (2014) Specific duplication and dorsoventrally asymmetric expression patterns of CYCLOIDEA-like genes in zygomorphic species of Ranunculaceae. PLOS One 9:e95727CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jensen U, Hoot SB, Johansson JT, Kosuge K (1995) Systematics and phylogeny of the Ranunculaceae; a revised family concept on the basis of molecular data. Pl Syst Evol Suppl 9:273–280Google Scholar
  24. Johansson JT (1995) A revised chloroplast DNA phylogeny of the Ranunculaceae. Pl Syst Evol Suppl 9:253–271Google Scholar
  25. Johansson JT (1998) Chloroplast DNA restriction site mapping and the phylogeny of Ranunculus (Ranunculaceae). Pl Syst Evol 213:1–19CrossRefGoogle Scholar
  26. Johansson JT, Jansen RK (1991) Chloroplast DNA variation among five species of Ranunculaceae: structure, sequence divergence, and phylogenetic relationships. Pl Syst Evol 178:9–25CrossRefGoogle Scholar
  27. Johansson JT, Jansen RK (1993) Chloroplast DNA variation and phylogeny of the Ranunculaceae. Pl Syst Evol 187:29–49CrossRefGoogle Scholar
  28. Kass RE, Raftery AE (1995) Bayes factors. JASA 90:773–795Google Scholar
  29. Katoh K, Misawa K, K-i Kuma, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kim YD, Kim S-H, Kim CH, Jansen RK (2004) Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF. Biochem Syst Ecol 32:291–301CrossRefGoogle Scholar
  31. Koelsch A, Gleissberg S (2006) Diversification of CYCLOIDEA-Like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s.str. Pl Biol 8:680–687CrossRefGoogle Scholar
  32. Kosuge K, Sawada K, Denda T (1995) Phylogenetic relationships of some genera in the Ranunculaceae based on alcohol dehydrogenase genes. Pl Syst Evol Suppl 9:263–271Google Scholar
  33. Lehnebach C, Cano A, Monsalve C, McLenachan P, Hörandl E, Lockhart P (2007) Phylogenetic relationships of the monotypic Peruvian genus Laccopetalum (Ranunculaceae). Pl Syst Evol 264:109–116CrossRefGoogle Scholar
  34. Loconte H, Campbell LM, Stevenson DW (1995) Ordinal and familial relationships of ranunculid genera. Pl Syst Evol 99–118Google Scholar
  35. Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799CrossRefPubMedGoogle Scholar
  36. Miikeda O, Kita K, Handa T (2006) Phylogenetic relationships of Clematis (Ranunculaceae) based on chloroplast and nuclear DNA sequences. Bot J Linn Soc 152:153–168CrossRefGoogle Scholar
  37. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp 1–8Google Scholar
  38. Nylander JAA (2004) MrAIC. pl. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  39. Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A (2013) Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. Frontiers Pl Sci 4:358Google Scholar
  40. Preston JC, Hileman LC (2012) Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3:6CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ro KE, McPheron BA (1997) Molecular Phylogeny of the Aquilegia Group (Ranunculaceae) based on Internal Transcribed Spacers and 5.8S Nuclear Ribosomal DNA. Biochem Syst Ecol 25:445–461CrossRefGoogle Scholar
  42. Ro KE, Keener CS, McPheron BA (1997) Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships. Molec Phylogen Evol 8:117–127CrossRefGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  44. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Molec Biol 132:365–386Google Scholar
  45. Sargent RD (2004) Floral symmetry affects speciation rates in angiosperms. Proc Roy Soc London Ser B Biol Sci 271:603–608CrossRefGoogle Scholar
  46. Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508CrossRefPubMedGoogle Scholar
  48. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molec Biol Evol 16:1114–1116CrossRefGoogle Scholar
  49. Soltis DE, Senters AE, Zanis MJ, Kim S, Thompson JD, Soltis PS, Ronse De Craene LP, Endress PK, Farris JS (2003) Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. Amer J Bot 90:461–470CrossRefGoogle Scholar
  50. Soza VL, Brunet J, Liston A, Smith PS, Di Stilio VS (2012) Phylogenetic insights into the correlates of dioecy in meadow-rues (Thalictrum, Ranunculaceae). Molec Phylogen Evol 63:180–192CrossRefGoogle Scholar
  51. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  52. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463CrossRefPubMedGoogle Scholar
  53. Stevens PF (2001) Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/. Accessed Nov 2015
  54. Tamura M (1968) Morphology, ecology and phylogeny of the Ranunculaceae VIII. Sci Rep Osaka Univ 17:41–56Google Scholar
  55. Tamura M (1993) Ranunculaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants II. Springer, Berlin, pp 563–583Google Scholar
  56. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molec Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  57. Thompson J (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thorne R (1992) Classification and geography of the flowering plants. Bot Rev 58:225–327CrossRefGoogle Scholar
  59. Wang W, Chen Z-D (2007) Generic level phylogeny of Thalictroideae (Ranunculaceae)—implications for taxonomic status of Iand petal evolution. Taxon 56:811–821CrossRefGoogle Scholar
  60. Wang ZF, Ren Y (2008) Ovule morphogenesis in Ranunculaceae and its systematic significance. Ann Bot (Oxford) 101:447–462CrossRefGoogle Scholar
  61. Wang W-t, Chang M-c, Fang M-y, Ling P-p, Ting C-t, Wang S-h, Liou L (1980) Ranunculaceae subfam. Ranunculoideae. In: Wen-tsai W (eds) Fl. Reipubl. Popularis Sin., Science Press, Beijing, pp 1–345Google Scholar
  62. Wang W, Li RQ, Chen Z-D (2005) Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences. Pl Syst Evol 255:41–54CrossRefGoogle Scholar
  63. Wang W, Lu A-M, Ren Y, Endress ME, Chen Z-D (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect Pl Ecol Evol Syst 11:81–110CrossRefGoogle Scholar
  64. Wang W, Hu H, Xiang XG, Yu SX, Chen ZD (2010) Phylogenetic placements of Calathodes and Megaleranthis (Ranunculaceae): evidence from molecular and morphological data. Taxon 59:1712–1720Google Scholar
  65. Wiens JJ (2005) Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Syst Biol 54:731–742CrossRefPubMedGoogle Scholar
  66. Wiens JJ, Moen DS (2008) Missing data and the accuracy of Bayesian phylogenetics. J Syst Evol 46:307–314Google Scholar
  67. Wiens JJ, Morrill MC (2011) Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol 60:719–731CrossRefPubMedGoogle Scholar
  68. Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60:150–160CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY et al (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Pl Physiol 149:235–244Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Guillaume Cossard
    • 1
    • 2
    • 5
  • Julie Sannier
    • 1
    • 2
  • Hervé Sauquet
    • 1
  • Catherine Damerval
    • 2
  • Louis Ronse de Craene
    • 3
  • Florian Jabbour
    • 4
  • Sophie Nadot
    • 1
  1. 1.Université Paris Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079-AgroParisTechOrsayFrance
  2. 2.CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution-Le MoulonGif-Sur-YvetteFrance
  3. 3.Royal Botanic Garden EdinburghEdinburghUK
  4. 4.Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205 CNRS-MNHN-UPMC-EPHE, Muséum national d’histoire naturelleSorbonne UniversitésParisFrance
  5. 5.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland

Personalised recommendations