Plant Systematics and Evolution

, Volume 302, Issue 4, pp 357–366 | Cite as

Evidence of the production of 2n eggs in diploid plants of the autopolyploid complex Turnera sidoides L. (Passifloraceae)

  • Ivana E. Kovalsky
  • Viviana G. Solís Neffa
Original Article


Turnera sidoides is a complex of dystilous perennial rhizomatous herbs with five subspecies in which diploid (2n = 2x = 14) to octoploid (2n = 8x = 56) cytotypes were found. Previous studies have suggested an autopolyploid origin of the complex, and provided evidence for the production of 2n pollen in experimental conditions as well as in natural populations. However, only the production of 2n pollen has been demonstrated so far, while the production of 2n eggs on experimental crosses or in natural populations of T. sidoides remains unknown. In this paper we investigate the production of 2n eggs in diploid individuals to understand how they may have contributed to the origin and establishment of polyploids in diploid populations of T. sidoides. Our progeny test and flow cytometric analysis of seeds collected in natural populations of this species complex, show that the triploid embryos originated from 2n eggs, suggesting that 2n eggs can contribute to the origin of neopolyploids by sexual unilateral polyploidization as well as by sexual bilateral polyploidization. The occurrence of plants that continuously form many 2n eggs and pollen would play a key role in the establishment of neopolyploids in natural diploid populations.


2n eggs Polyploidy Sexual polyploidization Turnera sidoides 



We are deeply indebted to anonymous referees for their helpful comments on earlier version of this manuscript. This research was partially supported by Grants of the Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT- FONCyT, PICT 07-1329 and PICT 12-1812), the National Research Council of Argentina (CONICET, PIP 11220120100192CO), and the Secretaría General de Ciencia y Técnica de la Universidad Nacional del Nordeste (SGCyT-UNNE, PI-A003/10) to V. G. Solís Neffa. I. E. Kovalsky is a Post Doctoral Fellow of CONICET and the Northeastern National University (UNNE). V. G. Solís Neffa is a member of the Carrera del Investigador Científico of CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest


  1. Adams K, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539–543CrossRefPubMedGoogle Scholar
  2. Alexander DE, Beckett JB (1963) Spontaneous triploidy and tetraploidy in maize. J Heredity 54:103–106Google Scholar
  3. Arbo MM (1985) Notas taxonómicas sobre Turneráceas americanas. Candollea 40:175–191Google Scholar
  4. Arbo MM (1987) Turneraceae. In: Spichiger R (ed) Flora del Paraguay. Conservatoire et Jardin botaniques, Gèneve, pp 1–65Google Scholar
  5. Arbo MM, Fernández A (1987) Cruzamientos intra e interespecíficos en Turnera, Serie Canaligerae. Bonplandia 6:23–38Google Scholar
  6. Bever JD, Felber F (1998) The theoretical population genetics of autopolyploidy. Oxford Surv Evol Biol 8:185–217Google Scholar
  7. Bretagnolle F (2001) Pollen production and spontaneous polyploidization in diploid populations of Anthoxanthum alpinum. Biol J Linn Soc 72:241–247CrossRefGoogle Scholar
  8. Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22CrossRefGoogle Scholar
  9. Brownfield L, Köhler C (2011) 2n gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668CrossRefPubMedGoogle Scholar
  10. Calderini O, Mariani A (1997) Increasing 2n gamete production of diploid alfafa by cycles of phenotypic recurrent selection. Euphytica 93:113–118CrossRefGoogle Scholar
  11. Camadro EL, Espinillo JC (1990) Germplasm transfer from the wild tetraploid species Solanum acaule Bitt. to the cultivated potato, S. tuberosum L. using 2n egg. Amer Potato J 67:737–749CrossRefGoogle Scholar
  12. Clausen RE, Goodspeed TH (1925) Interspecific hybridization in Nicotiana. II. A tetraploid glutinosa-Tabacum hybrid, an experimental verification of Winge’s hypothesis. Genetics 10:278–284PubMedPubMedCentralGoogle Scholar
  13. Darlington CD (1937) Recent advances in cytology. Blakinston´s Son and Co. Inc., PhiladelphiaGoogle Scholar
  14. De Haan A, Maceira NO, Lumaret R, Delay J (1992) Production of 2n gametes in diploid subspecies of Dactylis glomerata L. Ocurrence and frequency of 2n eggs. Ann Bot (Oxford) 69:345–350Google Scholar
  15. De Storme N, Zamariola J, Mau M, Sharbel TF, Geelen D (2013) Volume-based pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants. Pl Reprod 26:65–81CrossRefGoogle Scholar
  16. Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2009) Occurrence of viable 2n pollen in a Begonia colletion. Euphytica 168:81–94CrossRefGoogle Scholar
  17. Elías G (2010) Dinámica de una zona de contacto diploide-tetraploide de Turnerasidoidessubsp. pinnatifida (Turneraceae). PhD Thesis, Universidad Nacional de Tucumán, San Miguel de TucumánGoogle Scholar
  18. Elías G, Sartor M, Solís Neffa VG (2011) Patterns of cytotype variation of Turnera sidoides subsp. pinnatifida (Turneraceae) in mountain ranges of central Argentina. J Pl Res 124:25–34CrossRefGoogle Scholar
  19. Erilova A, Brownfield L, Exner V, Rosa M, Twell D (2009) Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5(9):e1000663. doi: 10.1371/journal.pgen.1000663 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Felber F, Bever JD (1997) Effect of triploid fitness on the coexistence of diploids and tetraploids. Biol J Linn Soc 60:95–106CrossRefGoogle Scholar
  21. Fernández A (1987) Estudios cromosómicos en Turnera y Piriqueta (Turneraceae). Bonplandia 6:1–21Google Scholar
  22. Fernández A, Arbo MM (1989) Relaciones genómicas entre cuatro especies diploides de Turnera con flores amarillas (Serie Canaligerae). Bonplandia 6:93–109Google Scholar
  23. Fernández A, Arbo MM (1990) Gametas no reducidas y relaciones genómicas entre tres especies de Turnera (Turneraceae). Darwiniana 30:21–26Google Scholar
  24. Fernández A, Solís Neffa VG (2004) Genomic relationships between Turnera krapovickasii (2x, 4x) and T. ulmifolia (6x) (Turneraceae, Turnera). Caryologia 57:45–51CrossRefGoogle Scholar
  25. Fernández A, Rey H, Solís Neffa VG (2010) Evolutionary relationships between the diploid Turnera grandiflora and the octoploid T. fernandezii (Series Turnera, Turneraceae). Ann Bot Fenn 47:321–329CrossRefGoogle Scholar
  26. Fowler NL, Levin DA (1984) Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Amer Naturalist 124:703–711CrossRefGoogle Scholar
  27. Harlan JR, de Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev (London) 41:361–390CrossRefGoogle Scholar
  28. Husband B (2000) Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proc Roy Soc London Ser B Biol Sci 267:217–223CrossRefGoogle Scholar
  29. Jansen RC, Den Nijs APM (1993) A statistical mixture model for estimating the proportion of 2n pollen grains in perennial ryegrass (Lolium perenne L.) via the size of pollen grains. Euphytica 70:205–215CrossRefGoogle Scholar
  30. Karpechenko GD (1927) The production of polyploid gametes in hybrids. Hereditas 9:349–368CrossRefGoogle Scholar
  31. Köhler C, Mittelsten Scheid O, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148CrossRefPubMedGoogle Scholar
  32. Koutecky P, Baďurová T, Štech M, Košnar J, Karásek J (2010) Hybridization between diploid Centaurea pseudophrygia and tetraploid C. juncea (Asteraceae): the role of mixed pollination, 2n gametes, and mentor effects. Biol J Linn Soc 104:93–106CrossRefGoogle Scholar
  33. Kovalsky IE (2012) Origen y establecimiento de neopoliploides en poblaciones naturales de Turnera sidoides L. (Turneraceae). Doctoral Thesis, Universidad Nacional de Córdoba, CórdobaGoogle Scholar
  34. Kovalsky IE, Solís Neffa VG (2012) Evidence of 2n microspore production in a natural diploid population of Turnera sidoides subsp. carnea and its relevance in the evolution of the T. sidoides (Turneraceae) autopolyploid complex. J Pl Res 125:725–734CrossRefGoogle Scholar
  35. Kovalsky IE, Solís Neffa VG (2015) Análisis de la progenie de individuos productores y no productores de gametos masculinos no reducidos de Turnera sidoides L. (Passifloraceae). Bol Soc Argent Bot 50:23–33Google Scholar
  36. Kovalsky IE, Fernández A, Solis Neffa VG (2014) Mecanismos citológicos involucrados en la producción de gametos masculinos no reducidos en individuos diploides de Turnera sidoides subsp. carnea (Passifloraceae). Bol Soc Argent Bot 49:227–234Google Scholar
  37. Levin DA (1971) The origin of reproductive isolating mechanisms in flowering plants. Taxon 20:91–113CrossRefGoogle Scholar
  38. Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43CrossRefGoogle Scholar
  39. Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mable BK (2003) Breaking down taxonomic barriers in polyploidy research. Trends Pl Sci 8:582–590CrossRefGoogle Scholar
  41. Marks G (1966) The origin and significance of intraspecific polyploidy: experimental evidence from Solanum chacoense. Evolution 20:552–557CrossRefGoogle Scholar
  42. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Pl J 21:97–108CrossRefGoogle Scholar
  43. Mendiburu AO, Peloquín SJ (1977) The significance of 2n gametes in potato breeding. Theor Appl Genet 49:53–61CrossRefPubMedGoogle Scholar
  44. Mok DWS, Peloquín SJ (1975) Three mechanisms of 2n pollen formation in diploid potatoes. Can J Genet Cytol 17:217–225CrossRefGoogle Scholar
  45. Mola Moringa NS, Moreno EMS, Kovalsky IE, Robledo G, Solis Neffa VG (2015) Análisis de la variabilidad genética y de la viabilidad de las semillas de los citotipos de una población diploide-tetraploide de Turnera sidoides. JBAG 26(Supp.):117Google Scholar
  46. Ockendon DJ (1968) Biosystematic studies in the Linum perenne group. New Phytol 67:787–813CrossRefGoogle Scholar
  47. Orjeda G, Freyre R, Iwanaga M (1990) Production of 2n pollen in diploid Ipomoea trifida, a putative wild ancestor of the sweet potato. J Heredity 81:462–467Google Scholar
  48. Osborn TC, Pires JC, Birchler JA, Auger DL, Chen J, Lee H, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147CrossRefPubMedGoogle Scholar
  49. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462CrossRefPubMedGoogle Scholar
  50. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Rev Genet 34:401–437CrossRefGoogle Scholar
  51. Pan G, Zhou Y, Fowke LC, Wang H (2004) An efficient method for flow cytometric analysis of pollen and detection of 2n nuclei in Brassica napus pollen. Pl Cell Rep 23:196–202CrossRefGoogle Scholar
  52. Panseri AF, Seijo JG, Solís Neffa VG (2008) Análisis de la producción y frecuencia de microsporas no reducidas en diploides de Turnera sidoides (Turneraceae). Bol Soc Argent Bot 43:95–101Google Scholar
  53. Parrot WA, Smith RR (1985) Production of 2n pollen in red clover. Crop Sci 24:469–472CrossRefGoogle Scholar
  54. Pfeiffer TW, Bingham ET (1983) Abnormal meiosis in alfalfa, Medicago sativa: cytology of 2n egg and 4n pollen formation. Can J Genet Cytol 25:107–112CrossRefGoogle Scholar
  55. Ramsey J (2007) 2n gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143–150CrossRefPubMedGoogle Scholar
  56. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  57. Rhoades MM, Dempsey E (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54:505–522PubMedPubMedCentralGoogle Scholar
  58. Rodríguez DJ (1996) A model for the establishment of polyploidy in plants. Amer Naturalist 147:33–46CrossRefGoogle Scholar
  59. Satina S, Blakeslee AF (1935) Cytological effects of a gene in Datura which causes dyad formation in sporogenesis. Bot Gaz 96:521–532CrossRefGoogle Scholar
  60. Shore JS, Barrett SCH (1985) Morphological differentiation and crossability among populations of the Turnera ulmifolia L. complex (Turneraceae). Syst Bot 10:308–321CrossRefGoogle Scholar
  61. Solís Neffa VG (2000) Estudios biosistemáticos en el complejo Turnera sidoides L. (Turneraceae, Leiocarpae). PhD Thesis, Universidad Nacional de Córdoba, CórdobaGoogle Scholar
  62. Solís Neffa VG (2010) Geographic patterns of morphological variation in Turnera sidoides L. subsp. pinnatifida (Juss. Ex Poir.) Arbo (Turneraceae). Pl Syst Evol 284:219–229CrossRefGoogle Scholar
  63. Solís Neffa VG, Fernández A (2001) Cytogeography of the Turnera sidoides L. complex (Turneraceae, Leiocarpae). Bot J Linn Soc 137:189–196CrossRefGoogle Scholar
  64. Solís Neffa VG, Fernández A (2002) Karyotypic studies in Turnera sidoides complex (Turneraceae, Leiocarpae). Amer J Bot 89:551–558CrossRefGoogle Scholar
  65. Solís Neffa VG, Panseri AF, Reynoso W, Seijo JG (2004) Variación en el color de flores y números cromosómicos en el noroeste del área de distribución de Turnera sidoides (Turneraceae). Bonplandia 13:117–128Google Scholar
  66. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, DePamphilis C, Kerr Wall P, Soltis PS (2009) Polyploidy and Angiosperm diversification. Amer J Bot 96:336–348CrossRefGoogle Scholar
  67. Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy? Taxon 59:1387–1403Google Scholar
  68. Soltis DE, Visger CJ, Soltis PS (2014) The polyplody revolution then…and now: Stebbins revisited. Amer J Bot 101:1057–1078CrossRefGoogle Scholar
  69. Stebbins GL (1958) The inviability, weakness and sterility of interspecific hybrids. Advances Genet 9:147–215CrossRefGoogle Scholar
  70. Stelly DM, Peloquín SJ (1986) Diploid female gametophyte formation in 24-chromosome potatoes genetic evidence for the prevalence of the second meiotic division restitution mode. Canad J Genet Cytol 28:101–108CrossRefGoogle Scholar
  71. Storey WB (1956) Diploid and polyploid gamete formation in orchids. Proc Amer Soc Hortic Sci 68:491–502Google Scholar
  72. Tavoletti S, Mariani A, Veronesi F (1991) Phenotypic recurrent selection for 2n pollen and 2n egg production in diploid alfalfa. Euphytica 57:97–102CrossRefGoogle Scholar
  73. Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307CrossRefPubMedGoogle Scholar
  74. Tyagi BR (1988) The mechanism of 2n pollen formation in diploids of Costus speciosus (Koenig) J. E. Smith and role of sexual polyploidization in the origin of intraspecific chromosomal races. Cytologia 53:763–770CrossRefGoogle Scholar
  75. Veerle L, Baert J, Roldan-Ruiz I, De Loose M, Van Bockstaele E (2002) Tracing of 2n egg occurrence in perennial ryegrass (Lolium perenne L.) using interploidy crosses. Euphytica 123:159–164CrossRefGoogle Scholar
  76. Veilleux RE (1985) Diploid and polyploid gametes in crop plants: mechanisms of formation and utilization in plant breeding. Pl Breed Rev 3:253–288Google Scholar
  77. Veronesi F, Mariani A, Bingham ET (1986) 2n gametes in diploid Medicago and their importance in alfalfa breeding. Theor Appl Genet 72:37–41CrossRefPubMedGoogle Scholar
  78. Veronesi F, Tavoletti S, Mariani A (1990) Identification of 2n and 4n gamete producers in an experimental population of diploid Medicago. J Genet Breed 44:143–148Google Scholar
  79. Werner JE, Peloquín SJ (1991) Occurrence and mechanism of 2n egg formation in 2x potato. Genome 34:975–982CrossRefGoogle Scholar
  80. Winge O (1917) The chromosomes. Their numbers and general importance. CR Trav Lab Carlsberg 13:131–175Google Scholar
  81. Woodell SRJ, Valentine DH (1961) Studies in the British Primulas. IX. Seed incompatibility in diploid-autotetraploid crosses. New Phytol 60:282–294CrossRefGoogle Scholar
  82. Zhou S, Ramanna MS, Visser RGF, van Tuyl JM (2008) Genome composition of triploid lily cultivars derived from sexual polyploidization of Longiflorum × Asiatic hybrids (Lilium). Euphytica 160:207–215CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Ivana E. Kovalsky
    • 1
    • 2
  • Viviana G. Solís Neffa
    • 1
    • 2
  1. 1.Laboratorio de Citogenética y Evolución VegetalInstituto de Botánica del Nordeste (UNNE-CONICET)CorrientesArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE)CorrientesArgentina

Personalised recommendations