Advertisement

Plant Systematics and Evolution

, Volume 302, Issue 3, pp 291–303 | Cite as

Pollen morphology and ultrastructure of several Gnetum species: an electron microscopic study

  • Maria Tekleva
Original Article

Abstract

Pollen grains of five Gnetum species have been studied in scanning and transmission electron microscopy: G. africanum, G. funiculare, G. indicum, G. leptostachyum, and G. macrostachyum. The exine ultrastructure was described for the first time for G. funiculare, G. leptostachyum, and G. macrostachyum. The pollen grains are small, inaperturate, and microechinate. The sporoderm includes a rather thin tectum, granular infratectum, and lamellate endexine. The foot layer is indistinct or absent in G. africanum, G. funiculare, and G. macrostachyum and thin in G. indicum and G. leptostachyum. Gnetum africanum differs from other studied species of the genus in having smaller supratectal microechini. They occur on considerably raised exine regions (islands) that are interpreted as an equivalent to the plicae in Ephedra and Welwitschia. In Asian species of Gnetum, a microechinus and area around it are interpreted as equivalent to the islands of G. africanum and the plicae in Ephedra and Welwitschia. The infratectum in G. africanum consists of few, widely spaced large granules in contrast to small densely packed granules of other studied Gnetum species. A comparison of the published and original data on extant pollen of Gnetales and fossil ephedroid pollen shows a great similarity in the sporoderm ultrastructure. Absence of Gnetum-like pollen in the fossil record may be due to their thin ectexine, possible separation of the ect- and endexine or misinterpretation.

Keywords

Gnetales Gnetum pollen Granular ultrastructure Microechinate sculpture 

Notes

Acknowledgments

I am grateful to Dr. J. F. Maxwell (Chiang Mai University, Thailand) for providing the material of Gnetum leptostachyum and G. macrostachyum, and to Prof. James Doyle and an anonymous reviewer for valuable comments and corrections on the manuscript. The work was performed at the User Facilities Center of M.V. Lomonosov Moscow State University under the financial support of the Ministry of Education and Science of the RF and at the User Facilities Center of the A.A. Borissiak Paleontological Institute RAS. The study was supported by the Russian foundation for basic research, project number 14-04-00044 and by the Grant by President RF MK-3156.2014.4.

References

  1. Abercrombie JM, O’Meara BC, Moffatt AR, Williams JH (2011) Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. EvoDevo 2:14. doi: 10.1186/2041-9139-2-14 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bernard VV, Meyer NR (1972) Pyl’cevye zerna Ephedra, Welwitschia i Gnetum. Vestn Moskovsk Univ 27:86–88Google Scholar
  3. Biye EH (2013) Sustaining Gnetum L. (Gnetaceae) in Africa through improved taxonomy and domestication. PhD Thesis, University of the Witwatersrand, JohannesburgGoogle Scholar
  4. Biye EH, Balkwill K, Cron GV (2014) A clarification of Gnetum L. (Gnetaceae) in Africa and the description of two new species. Pl Syst Evol 300:263–272. doi: 10.1007/s00606-013-0879-6 CrossRefGoogle Scholar
  5. Blackmore S, Barnes SH (1990) Pollen wall development in angiosperms. In: Blackmore S, Knox RB (eds) Microspores evolution and ontogeny. Academic Press, London, pp 173–192CrossRefGoogle Scholar
  6. Bolinder K, Niklas KJ, Rydin C (2015) Aerodynamics and pollen ultrastructure in Ephedra. Amer J Bot 102(3):457–470. doi: 10.3732/ajb.1400517 CrossRefGoogle Scholar
  7. Buchmann SL, O’Rourke MK, Niklas KJ (1989) Aerodynamics of Ephedra trifurca. III. Selective pollen capture by pollination droplets. Bot Gaz 150:122–131CrossRefGoogle Scholar
  8. Doores AS, Osborn JM, El-Ghazaly G (2007) Pollen ontogeny in Ephedra americana (Gnetales). Int J Pl Sci 168(7):985–998CrossRefGoogle Scholar
  9. Doyle JA (1996) Seed plant phylogeny and the relationships of Gnetales. Int J Pl Sci 157:3–39CrossRefGoogle Scholar
  10. El-Ghazaly G, Rowley JR (1997) Pollen wall of Ephedra foliata. Palynology 21:7–18CrossRefGoogle Scholar
  11. El-Ghazaly G, Rowley JR, Hesse M (1998) Polarity, aperture condition and germination in pollen grains of Ephedra (Gnetales). Pl Syst Evol 213:217–231CrossRefGoogle Scholar
  12. Endress PK (1996) Structure and function of female and bisexual organ complexes in Gnetales. Int J Pl Sci 157:113–125CrossRefGoogle Scholar
  13. Erdtman G (1954) Pollen morphology and plant taxonomy. Bot Not 107:65–81Google Scholar
  14. Erdtman G (1965) Pollen and spore morphology/plant taxonomy. Gymnospermae, Pteridophyta, bryophyta. Almqvist & Wiksell, StockholmGoogle Scholar
  15. Gillespie LJ, Nowicke JW (1994) Systematic implications of pollen morphology in Gnetum. Acta Bot Gallica 141:131–139. doi: 10.1080/12538078.1994.10515146 CrossRefGoogle Scholar
  16. Gullväg B (1966) The fine structure of some gymnosperm pollen walls. Grana Palynol 6:435–475CrossRefGoogle Scholar
  17. Guo SX, Sha JG, Bian LZ, Qiu YL (2009) Male spike strobiles with Gnetum affinity from the Early Cretaceous in western Liaoning, Northeast China. J Syst Evol 47:93–102. doi: 10.1111/j.1759-6831.2009.00007.x CrossRefGoogle Scholar
  18. Havinga AJ (1967) Palynology and pollen preservation. Rev Palaeobot Palynol 2:81–98CrossRefGoogle Scholar
  19. Hesse M (1980) Pollenkitt is lacking in Gnetum gnemon (Gnetaceae). Pl Syst Evol 136:41–46. doi: 10.1007/BF00985310 CrossRefGoogle Scholar
  20. Hesse M (1984) Pollenkitt is lacking in Gnetatae : Ephedra and Welwitschia; further proof for its restriction to the angiosperms. Pl Syst Evol 144:9–16. doi: 10.1007/BF00990796 CrossRefGoogle Scholar
  21. Hesse M, Zetter R (2007) The fossil pollen record of Araceae. Pl Syst Evol 263:93–115. doi: 10.1007/s00606-006-0468-z CrossRefGoogle Scholar
  22. Hesse M, Weber M, Halbritter H-M (1999) Pollen walls of Araceae, with special reference to their fossilization potential. Grana 38:203–209. doi: 10.1080/001731300750044582 CrossRefGoogle Scholar
  23. Hesse M, Weber M, Halbritter H (2000) A comparative study of the polyplicate pollen types in Arales, Laurales, Zingiberales and Gnetales. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, pp 227–239Google Scholar
  24. Hesse M, Halbritter H, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen terminology—an illustrated handbook. Springer, New York. doi: 10.1007/978-3-211-79894-2 Google Scholar
  25. Hou C, Humphreys AM, Thureborn O, Rydin C (2015) New insights into the evolutionary history of Gnetum (Gnetales). Taxon 64:239–253CrossRefGoogle Scholar
  26. Kato M, Inoue T, Nagamitsu T (1995) Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. Amer J Bot 82:862–868CrossRefGoogle Scholar
  27. Kuprianova LA (1983) Struktura pyl’cy gnetuma—skhodstvo ili rodstvo? Priroda 12:70–71Google Scholar
  28. Kurmann MH (1990) Exine ontogeny in conifers. In: Blackmore S, Knox RB (eds) Microspores evolution and ontogeny. Academic Press, London, pp 157–172CrossRefGoogle Scholar
  29. Kurmann MH (1992) Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bull 47:25–39CrossRefGoogle Scholar
  30. Markevich VS, Bugdaeva EV, Ashraf AR, Ge Sun (2011) Boundary of Cretaceous and Paleogene continental deposits in Zeya-Bureya Basin, Amur (Heilongjiang) river region. Global Geol 14:144–159Google Scholar
  31. Meeuse ADJ, De Meijer AH, Mohr OWP, Wellinga SM (1990) Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk. (=E. alte C.A. Mey.), with some notes on Ephedra campylopoda C.A.Mey. III. Further anthecological studies and relative importance of entomophily. Israel J Bot 39:113–123. doi: 10.1080/0021213X.1990.10677136 Google Scholar
  32. Meyer-Melikian NR (1994) Pyl’cevye zjorna gnetovyh. In: Rovnina LV (ed) Palinologija v stratigrafii. Nauka, Moscow, pp 30–33Google Scholar
  33. Meyer-Melikian NR, Bovina IY, Kosenko YV, Polevova SV, Severova EE, Tekleva MV, Tokarev PI (2004) Atlas morfologii astrovyh (Asteraceae). Palinomorfologija i razvitie sporodermy predstavitelej semejstva Asteraceae. KMK, MoscowGoogle Scholar
  34. Niklas KJ (2015) A biophysical perspective on the pollination biology of Ephedra nevadensis and E. trifurca. Bot Rev 81:28–41. doi: 10.1007/s12229-014-9148-9 CrossRefGoogle Scholar
  35. Orel LI, Kuprianova LA, Golubeva EA (1986) Ul’trastruktura acetolicirovannyh obolochek tapetal’nyh kletok i pyl’cevyh zjoren u Gnetum africanum (Gnetaceae). Bot Zhurn (Leningrad) 71:750–754Google Scholar
  36. Osborn JM (2000) Pollen morphology and ultrastructure of gymnospermous anthophytes. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. The Royal Botanical Gardens, Kew, pp 163–185Google Scholar
  37. Osborn JM, Taylor TN, de Lima MR (1993) The ultrastructure of fossil ephedroid pollen with gnetalean affinities from the Lower Cretaceous of Brazil. Rev Palaeobot Palynol 77:171–184. doi: 10.1016/0034-6667(93)90003-D CrossRefGoogle Scholar
  38. Rydin C, Friis EM (2005) Pollen germination in Welwitschia mirabilis Hook. f.: comparing differences between the polyplicate pollen producing genera of the Gnetales. Grana 44:137–141. doi: 10.1080/00173130500230459 CrossRefGoogle Scholar
  39. Rydin C, Friis EM (2010) A new Early Cretaceous relative of Gnetales: Siphonospermum simplex gen. et sp. nov. from the Yixian Formation of Northeast China. BMC Evol Biol 10:183. doi: 10.1186/1471-2148-10-183 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Samain M-S, Vrijdaghs A, Hesse M, Goetghebeur P, Rodríguez FJ, Stoll A, Neinhuis C, Wanke S (2010) Verhuellia is a segregate lineage in Piperaceae: more evidence from flower, fruit and pollen morphology, anatomy and development. Ann Bot (Oxford) 105:677–688CrossRefGoogle Scholar
  41. Tekleva MV, Krassilov VA (2009) Comparative pollen morphology and ultrastructure of modern and fossil gnetophytes. Rev Palaeobot Palynol 156:130–138. doi: 10.1016/j.revpalbo.2008.12.007 CrossRefGoogle Scholar
  42. Tekleva MV, Krassilov VA, Kvaček J, van Konijnenburg-van Cittert JHA (2006) Eucommiidites: ultrastructure and affinities. Acta Palaeobot 46:137–155Google Scholar
  43. Thompson WP (1916) The morphology and affinities of Gnetum. Amer J Bot 3:135–184CrossRefGoogle Scholar
  44. Trevisan L (1980) Ultrastructural notes and considerations on Ephedripites, Eucommiidites and Monosulcites pollen grains from Lower Cretaceous sediments of southern Tuscany (Italy). Pollen Spores 22:85–132Google Scholar
  45. Wetschnig W, Depish B (1999) Pollination biology of Welwitschia mirabilis Hook. f. (Welwitschiaceae, Gnetopsida). Phyton (Horn) 39:167–183Google Scholar
  46. Wodehouse RP (1935) Pollen grains; their structure, identification and significance in science and medicine. McGraw-Hill Book Company, New YorkGoogle Scholar
  47. Won H, Renner S (2003) Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)—clock calibration when outgroup relationships are uncertain. Syst Biol 55:610–622CrossRefGoogle Scholar
  48. Won H, Renner SS (2005) The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Molec Phylogen Evol 36:581–597CrossRefGoogle Scholar
  49. Yao Y-F, Xi Y-Z, Geng B-Y, Li C-S (2004) The exine ultrastructure of pollen grains in Gnetum (Gnetaceae) from China and its bearing on the relationship with the ANITA Group. Bot J Linn Soc 146:415–425. doi: 10.1111/j.1095-8339.2004.00342.x CrossRefGoogle Scholar
  50. Zavada MS (1984a) Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann Missouri Bot Gard 71:444–463. doi: 10.2307/2399034 CrossRefGoogle Scholar
  51. Zavada MS (1984b) Pollen wall development of Austrobaileya maculata. Bot Gaz 145:11–21CrossRefGoogle Scholar
  52. Zavada MS, Gabaraeva NI (1991) Comparative pollen wall development of Welwitschia mirabilis and selected primitive angiosperms. Bull Torrey Bot Club 118:292–302. doi: 10.2307/2996644 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.A.A. Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations