Plant Systematics and Evolution

, Volume 301, Issue 9, pp 2203–2218 | Cite as

First fossil record of Staphylea L. (Staphyleaceae) from North America, and its biogeographic implications

Original Article


The occurrences of Staphylea L. (Staphyleaceae) fossils have been abundantly documented from the Cenozoic of Eurasia, but none has been confirmed from North America to date. In this study, we describe Staphylealevisemia sp. nov. on the basis of seed remains from the latest Miocene to earliest Pliocene of northeastern Tennessee, southeastern USA. The seeds are characterized by a smoothly inflated body, a large hilar scar perforated by several vascular traces and bordered by a distinctive lip-like rim, a cuticle coating the seed coat interior, and seed coat section containing weakly developed tiny lumina. According to the paleogeographic distribution of the genus, it is hypothesized that Staphylea originated from western Eurasia no later than the late Oligocene, and arrived in eastern North America no later than the late Neogene, most possibly through the North Atlantic land bridges like many other seed plants.


Fossil seed Gray Fossil Site Late Neogene North America Staphylea 

Supplementary material

606_2015_1224_MOESM1_ESM.pdf (3.5 mb)
Online Resource 1 A taxon-characteristic matrix that includes eight taxa, i.e., the new fossil taxon plus seven extant species of Staphylea, and 23 characteristics (PDF 3549 kb) (PDF 3549 kb)
606_2015_1224_MOESM2_ESM.pdf (822 kb)
Online Resource 2 Seeds of Turpinia occidentalis from the United States National Herbarium (US), Smithsonian Institution, Washington, D.C., USA, with the voucher specimen from St. Elizabeth Parish, P. Arevedo-Rdgz 9532 (US) (PDF 821 kb) (PDF 821 kb)


  1. Bell WA (1957) Flora of the upper cretaceous nanaimo group of vancouver Island, British Columbia. Geol Surv Canad Mem 293:1–84Google Scholar
  2. Blackwell WH (1983) Fossil wood from “Sand Hill”, western central Mississippi. Bull Torrey Bot Club 110:63–69CrossRefGoogle Scholar
  3. Bojňanský V, Fargašová A (2007) Atlas of seeds and fruits of Central and East-European flora: the Carpathian Mountains region. Springer, Dordrecht, pp 399–401Google Scholar
  4. Brown RW (1933) Fossil plants from the Aspen shale of southwestern Wyoming. Proc US Natl Mus 82:1–10CrossRefGoogle Scholar
  5. Brown RW (1962) Paleocene flora of the Rocky Mountains and Great Plains. US Geol Surv Prof Paper 375:1–119Google Scholar
  6. Crabtree DR (1987) Angiosperms of the Northern Rocky Mountains: albian to campanian (Cretaceous) megafossil floras. Ann Missouri Bot Gard 74:707–747CrossRefGoogle Scholar
  7. Czaja A (2003) Paleocarpological investigations of the taphocoenoses of the Lower- and Middle Miocene from the opencast mine Berzdorf/Upper Lusatica (Saxony). Palaeontographica Abt B 265:1–148Google Scholar
  8. Denk T, Grimsson F, Zetter R (2010) Episodic migration of oaks to iceland—evidence for a North Atlantic “land bridge” in the latest Miocene. Amer J Bot 97:276–287CrossRefGoogle Scholar
  9. DeSantis LRG, Wallace SC (2008) Neogene forests from the Appalachians of Tennessee, USA: geochemical evidence from fossil mammal teeth. Palaeogeogr Palaeocl 266:59–68CrossRefGoogle Scholar
  10. Dickison WC (1987) A palynological study of the Staphyleaceae. Grana 26:11–24CrossRefGoogle Scholar
  11. Dorofeev PI (1963) The Tertiary floras of western Siberia. Komarov Botanical Institute, Academy of Sciences of the U.S.S.R., pp 209–211Google Scholar
  12. Gong F, Karsai I, Liu Y-S (2010) Vitis seeds (Vitaceae) from the late Neogene Gray Fossil Site, northeastern Tennessee, U.S.A. Rev Palaeobot Palynol 162:71–83CrossRefGoogle Scholar
  13. Gregor HJ (1978) The Miocene fruit- and seed-floras of the Oberpfalz Browncoal. I. Findings from the sandy interbeds. Palaeontographica Abt B 167:8–103Google Scholar
  14. Gregory-Wodzicki KM (1997) The late eocene house range flora, Sevier Desert, Utah: paleoclimate and paleoelevation. Palaios 12:552–567CrossRefGoogle Scholar
  15. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontogical statistical software for education and data analysis. Palaeontol Electron 4Google Scholar
  16. Hollick A (1929) New species of fossil plants from the Tertiary shales near De Beque, Colorado. Bull Torrey Bot Club 56:93–96CrossRefGoogle Scholar
  17. Huang Y-J, Liu Y-S, Zavada M (2014) New fossil fruits of Carya (Juglandaceae) from the latest Miocene to earliest Pliocene in Tennessee, eastern United States. J Syst Evol 52:508–520CrossRefGoogle Scholar
  18. Hulbert RC, Wallace SC, Klippel WE, Parmalee PW (2009) Cranial morphology and systematics of an extraordinary sample of the late Neogene dwarf tapir, Tapirus polkensis (Olsen). J Paleontol 83:238–262CrossRefGoogle Scholar
  19. Ickert-Bond SM, Wen J (2006) Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Molec Phylogen Evol 39:512–528CrossRefGoogle Scholar
  20. Kirchheimer F (1957) Die Laubgewächse der Braunkohlenzeit mit einem kritischen Katalog ihrer Früchte und Samen. Knapp Verlag, Halle/Saale, pp 712–713Google Scholar
  21. Knowlton FH (1917) Fossil floras of the Vermejo and Raton formations of Colorado and New Mexico. US Geol Surv Prof Paper 101:223–435Google Scholar
  22. Kovar-Eder J, Meller B (2001) Plant assemblages from the hanging wall sequence of the opencast mine Oberdorf N Voitsberg, Styria (Austria, Early Miocene, Ottnangian). Palaeontographica Abt B 259:65–112Google Scholar
  23. Kräusel R (1937) Pflanzenreste aus den diluvialen Ablagerungen im Ruhr-Emscher-Lippe-Gebiete. Decheniana 95A:207–240Google Scholar
  24. Li D, Cai J, Wen J (2008) Staphyleaceae. In: Wu ZY, Raven PH (eds) Flora of China. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp 498–504Google Scholar
  25. Lin Q, Li C, Liu CJ, Yang ZR (2007) Seed morphology of the genus Illicium Linn. (Illiciaceae). Bull Bot Res 27:145–150Google Scholar
  26. Linnaeus C (1753) Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Impensis Laurentii Salvii, HolmiaeGoogle Scholar
  27. Liu Y-S, Jacques FMB (2010) Sinomenium macrocarpum sp. nov. (Menispermaceae) from the Miocene-Pliocene transition of Gray, northeast Tennessee, USA. Rev Palaeobot Palynol 159:112–122CrossRefGoogle Scholar
  28. MacGinitie HD (1953) Fossil plants of the Florissant beds, Colorado. Carnegie Inst Washington Pub 599:1–198Google Scholar
  29. Mädler K (1939) Die pliozäne flora von Frankfurt am main. Abh Senckenberg Naturf Ges 446:1–201Google Scholar
  30. Mai DH (1997) Floras from the Upper Oligocene at the northern margin of Lausitz, Saxony. Palaeontographica Abt B 244:1–124Google Scholar
  31. Mai DH (2001) The Middle and Upper Miocene floras of the Meuro and Rauno sequences in the Lusatica region, part II: dicotyledones. Palaeontographica Abt B 257:35–174Google Scholar
  32. Mai DH, Walther H (1988) Die pliozänen Floren von Thüringen, Deutsche Demokratische Republik. Quartärpaläontologie 7:55–297Google Scholar
  33. Manchester SR (1999) Biogeographical relationship of North America Tertiary floras. Ann Missouri Bot Gard 86:472–522CrossRefGoogle Scholar
  34. Manchester SR (2001) Update on the megafossil flora of Florissant, Colorado. In: Evanoff E, Gregory-Wodzicki KM, Johnson KR (eds) Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proc Denver Mus Nat Sci Ser 4:137–161Google Scholar
  35. Meller B, Kovar-Eder J, Zetter R (1999) Lower Miocene leaf, palynomorph, and diaspore assemblages from the base of the lignite-bearing sequence in the opencast mine Oberdorf, N Voitsberg (Styria, Austria) as an indication of “Younger Mastixioid” vegetation. Palaeontographica Abt B 252:123–179Google Scholar
  36. Miki S (1937) Plant fossils from the Stegodon Beds and the Elephas Beds near Akashi. Jap J Bot 8:303–341Google Scholar
  37. Miki S, Kokawa S (1962) Late Cenozoic floras of Kyushu, Japan. J Biol Osaka City Univ 13:65–85Google Scholar
  38. Oh I-C, Denk T, Friis EM (2003) Evolution of Illicium (Illiciaceae): mapping morphological characters on the molecular tree. Pl Syst Evol 240:175–209CrossRefGoogle Scholar
  39. Ozaki K (1991) Late Miocene and Pliocene floras in central Honshu, Japan. Bull Kanagawa Prefect Mus 1–244Google Scholar
  40. Peruzzi L, Passalacqua NG, Jarvis CE (2004) Lectotypification of Aizoon hispanicum, Plantago albicans, and Staphylea pinnata, names of three Linnaean species occurring in Calabria (S. Italy). Taxon 53:540–542CrossRefGoogle Scholar
  41. Shunk AJ, Driese SG, Clark GM (2006) Latest Miocene to earliest Pliocene sedimentation and climate record derived from paleosinkhole fill deposites, Gray Fossil Site, northeastern Tennessee, U.S.A. Palaeogeogr Palaeocl 231:265–278CrossRefGoogle Scholar
  42. Simmons SL (2007) Staphyleaceae. In: Kubitzki K (ed) Flowering plants. Eudicots. The families and genera of vascular plants, vol 9. Springer, Berlin, Heidelberg, pp 440–445CrossRefGoogle Scholar
  43. Sjin Q-J, Wei Z-X (2002) Studies on pollen morphology of Stachyuraceae and Staphyleaceae. Acta Bot Yunnanica 24:57–63Google Scholar
  44. Sosa V (1988) Staphyleaceae. Flora de Veracruz 57:1–11Google Scholar
  45. Spongberg S (1971) The Staphyleaceae in the southeastern United States. J Arnold Arbor 52:196–203Google Scholar
  46. Staszkiewicz J (1997) The variability of leaves and seeds of Staphylea pinnata. Fragm Flor Geobot Ser Polon Suppl 2:161–172Google Scholar
  47. Szafer W (1947) The Pliocene flora of Krościenka in Poland. II. Descriptive part. Polskiej Akademii Umiejętności, KrakówGoogle Scholar
  48. Szafer W (1954) Plioceńska flora okolic Czorsztynai jej stosunek do plejstocenu. Prace Inst Geol 11:1–238Google Scholar
  49. Tiffney BH (1979) Fruits and seeds of the Brandon Lignite III. Turpinia (Staphyleaceae). Brittonia 31:39–51CrossRefGoogle Scholar
  50. Tiffney BH (1985) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arbor 66:73–94Google Scholar
  51. Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int J Pl Sci 162:3–17CrossRefGoogle Scholar
  52. Van der Burgh J (1983) Allochthonous seed and fruit floras from the Pliocene of the lower Rhine Basin. Rev Palaeobot Palynol 40:33–90CrossRefGoogle Scholar
  53. Van der Burgh J (1987) Miocene floras in the lower Rhenish Basin and their ecological interpretation. Rev Palaeobot Palynol 52:99–366Google Scholar
  54. Wallace SC, Wang X (2004) Two new carnivores from an unusual late Tertiary forest biota in eastern North America. Nature 431:556–559CrossRefPubMedGoogle Scholar
  55. Wang Q, Manchester SR, Gregor H-J, Shen S, Li Z-Y (2013) Fruits of Koelreuteria (Sapindaceae) from the Cenozoic throughout the northern hemisphere: their ecological, evolutionary, and biogeographic implications. Amer J Bot 100:422–449CrossRefGoogle Scholar
  56. Weaver RE (1980) The bladdernuts. Arnoldia 40:76–93Google Scholar
  57. Wen J (1999) Evolution of eastern Asian and eastern North American disjunct pattern in flowering plants. Ann Rev Ecol Syst 30:421–455CrossRefGoogle Scholar
  58. Wen J, Ickert-Bond SM, Nie Z-L, Li R (2010) Timing and modes of evolution of eastern Asian-North American biogeographic disjunctions in seed plants. In: Long M, Gu H, Zhou Z (eds) Darwin’s heritage today: proceedings of the Darwin 200 Beijing International Conference. Higher Education Press, Beijing, pp 252–269Google Scholar
  59. Whitelaw JL, Mickus K, Whitelaw MJ, Nave J (2008) High-resolution gravity study of the Gray Fossil Site. Geophysics 73:B25–B32CrossRefGoogle Scholar
  60. Xie L, Yang ZY, Wen J, Li DZ, Yi TS (2014) Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. Molec Phylogen Evol 77:136–146CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesEast Tennessee State UniversityJohnson CityUSA
  2. 2.Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  3. 3.Department of Botany, MRC 166, National Museum of Natural HistorySmithsonian InstitutionWashington, D.C.USA
  4. 4.Research Center of Paleontology and StratigraphyJilin UniversityChangchunChina

Personalised recommendations