Plant Systematics and Evolution

, Volume 301, Issue 6, pp 1725–1733 | Cite as

Phylogenetic analysis of NAP, an unconventional actin of the Volvocales

  • Takako Kato-MinouraEmail author
  • Kumiko Karino
  • Nobuyuki Akimoto
  • Norito Yoshiga
  • Mika Ehara
  • Seishiro Aoki
Original Article


The unicellular green alga Chlamydomonas reinhardtii has two actin genes, one encoding a conventional actin and the other an unconventional actin called novel actin-like protein (NAP). These actins apparently differ in their ability to polymerize, but their specific functions in the cell are unknown. To understand their evolutionary relationship, we investigated the molecular phylogeny of the actin/NAP family in Volvocales, using fully identified sequences (Chlamydomonas moewusii, Gonium pectorale, and Volvox carteri) and newly determined partial sequences (Eudorina elegans, and Volvulina steinii). Although the origin of the NAP clade remains ambiguous, the inferred phylogenetic trees strongly support the monophyly of NAP genes and show that only the genomes of volvocine species contain NAP genes. The nonsynonymous substitution rate of the NAP gene is, in consistence with its long branch length in the phylogeny, relatively high compared with that of the actin gene. NAP is thus apparently unique to volvocine species and most likely performs a cellular function with fewer constraints.


Volvocales Divergent actin 



Novel actin-like protein


Operational taxonomic unit



This work was supported by grants from Chuo University (Joint Research Grant and Grant for Special Research). The authors express gratitude to Drs. T. Hamaji, H. Nozaki, and A. Fujiyama for the sequence information of G. pectorale actin and NAP; Mses. Y. Kakiyama and Y. Ohto for their assistance with the experiments; Mr. T. Naito for sequencing of G. pectorale NAP cDNA; Dr. N Ueki for maintaining volvocine strains; and Dr. R. Kamiya for his critical reading of the manuscript.

Supplementary material

606_2014_1187_MOESM1_ESM.pdf (50 kb)
Supplementary material 1 (PDF 49 kb)
606_2014_1187_MOESM2_ESM.pdf (61 kb)
Supplementary material 2 (PDF 61 kb)
606_2014_1187_MOESM3_ESM.pdf (72 kb)
Supplementary material 3 (PDF 72 kb)
606_2014_1187_MOESM4_ESM.pdf (58 kb)
Supplementary material 4 (PDF 57 kb)
606_2014_1187_MOESM5_ESM.pdf (54 kb)
Supplementary material 5 (PDF 53 kb)
606_2014_1187_MOESM6_ESM.pdf (55 kb)
Supplementary material 6 (PDF 54 kb)
606_2014_1187_MOESM7_ESM.pdf (59 kb)
Supplementary material 7 (PDF 58 kb)
606_2014_1187_MOESM8_ESM.pdf (50 kb)
Supplementary material 8 (PDF 49 kb)
606_2014_1187_MOESM9_ESM.pdf (51 kb)
Supplementary material 9 (PDF 50 kb)
606_2014_1187_MOESM10_ESM.pdf (51 kb)
Supplementary material 10 (PDF 50 kb)
606_2014_1187_MOESM11_ESM.pdf (51 kb)
Supplementary material 11 (PDF 51 kb)
606_2014_1187_MOESM12_ESM.pdf (50 kb)
Supplementary material 12 (PDF 50 kb)
606_2014_1187_MOESM13_ESM.pdf (49 kb)
Supplementary material 13 (PDF 48 kb)
606_2014_1187_MOESM14_ESM.pdf (49 kb)
Supplementary material 14 (PDF 49 kb)
606_2014_1187_MOESM15_ESM.pdf (747 kb)
Supplementary material 15 (PDF 746 kb)


  1. An SS, Mopps B, Weber K, Bhattacharya D (1999) The origin and evolution of green algal and plant actins. Molec Biol Evol 16:275–285CrossRefPubMedGoogle Scholar
  2. Aoki S, Ito M, Iwasaki W (2013) From beta- to alpha-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Molec Biol Evol 30:2494–2508. doi: 10.1093/molbev/mst153 CrossRefPubMedGoogle Scholar
  3. Arbiza L, Dopazo J, Dopazo H (2006) Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput Biol 2:e38. doi: 10.1371/journal.pcbi.0020038 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  5. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi: 10.1093/bioinformatics/btp348 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cresnar B, Mages W, Muller K, Salbaum JM, Schmitt R (1990) Structure and expression of a single actin gene in Volvox carteri. Curr Genet 18:337–346CrossRefPubMedGoogle Scholar
  7. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci USA 54:1665–1669CrossRefPubMedCentralPubMedGoogle Scholar
  8. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  9. Herron MD, Michod RE (2008) Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution 62:436–451. doi: 10.1111/j.1558-5646.2007.00304.x CrossRefPubMedGoogle Scholar
  10. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucl Acids Res 40:D109–D114. doi: 10.1093/nar/gkr988 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Kasai F, Kawachi M, Erata M, Mori F, Yumoto K (2009) NIES Collection. List of strains. 8th edition. Jap J Phycol 57:1–350Google Scholar
  12. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl Acids Res 33:511–518. doi: 10.1093/nar/gki198 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Kato-Minoura T (2011) Extremely low polymerizability of a highly-divergent Chlamydomonas actin (NAP). Biochem Biophys Res Commun 412:723–727. doi: 10.1016/j.bbrc.2011.08.040 CrossRefPubMedGoogle Scholar
  14. Kato-Minoura T, Hirono M, Kamiya R (1997) Chlamydomonas inner-arm dynein mutant, ida5, has a mutation in an actin-encoding gene. J Cell Biol 137:649–656CrossRefPubMedCentralPubMedGoogle Scholar
  15. Kato-Minoura T, Uryu S, Hirono M, Kamiya R (1998) Highly divergent actin expressed in a Chlamydomonas mutant lacking the conventional actin gene. Biochem Biophys Res Commun 251:71–76CrossRefPubMedGoogle Scholar
  16. Kato-Minoura T, Okumura M, Hirono M, Kamiya R (2003) A novel family of unconventional actins in volvocalean algae. J Molec Evol 57:555–561CrossRefPubMedGoogle Scholar
  17. Kwan AL, Li L, Kulp DC, Dutcher SK, Stormo GD (2009) Improving gene-finding in Chlamydomonas reinhardtii: GreenGenie2. BMC Genom 10:210. doi: 10.1186/1471-2164-10-210 CrossRefGoogle Scholar
  18. Lee VD, Finstad SL, Huang B (1997) Cloning and characterization of a gene encoding an actin-related protein in Chlamydomonas. Gene 197:153–159CrossRefPubMedGoogle Scholar
  19. Neiman M, Hehman G, Miller JT, Logsdon JM Jr, Taylor DR (2010) Accelerated mutation accumulation in asexual lineages of a freshwater snail. Molec Biol Evol 27:954–963. doi: 10.1093/molbev/msp300 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Prochnik SE et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226. doi: 10.1126/science.1188800 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Sheterline P, Clayton J, Sparrow JC (1999) Actin, 4th edn. OUP Oxford, OxfordGoogle Scholar
  22. Sugase Y, Hirono M, Kindle KL, Kamiya R (1996) Cloning and characterization of the actin-encoding gene of Chlamydomonas reinhardtii. Gene 168:117–121CrossRefPubMedGoogle Scholar
  23. Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl Acids Res 34:W609–W612. doi: 10.1093/nar/gkl315 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739Google Scholar
  25. Uchiyama I (2003) MBGD: microbial genome database for comparative analysis. Nucl Acids Res 31:58–62CrossRefPubMedCentralPubMedGoogle Scholar
  26. Weber K, Kabsch W (1994) Intron positions in actin genes seem unrelated to the secondary structure of the protein. EMBO J 13:1280–1286PubMedCentralPubMedGoogle Scholar
  27. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molec Biol Evol 24:1586–1591Google Scholar
  28. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molec Biol Evol 17:32–43Google Scholar
  29. Zakut R, Shani M, Givol D, Neuman S, Yaffe D, Nudel U (1982) Nucleotide sequence of the rat skeletal muscle actin gene. Nature 298:857–859CrossRefPubMedGoogle Scholar
  30. Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4:259–263. doi: 10.1016/S1672-0229(07)60007-2 CrossRefPubMedGoogle Scholar
  31. Zhou L, Pertea M, Delcher AL, Florea L (2009) Sim4cc: a cross-species spliced alignment program. Nucl Acids Res 37:e80. doi: 10.1093/nar/gkp319 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Takako Kato-Minoura
    • 1
    Email author
  • Kumiko Karino
    • 1
  • Nobuyuki Akimoto
    • 1
  • Norito Yoshiga
    • 1
  • Mika Ehara
    • 1
  • Seishiro Aoki
    • 2
  1. 1.Department of Biological Sciences, Faculty of Science and EngineeringChuo UniversityTokyoJapan
  2. 2.Department of General Systems Studies, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations