Plant Systematics and Evolution

, Volume 301, Issue 5, pp 1299–1313 | Cite as

Odd man out: why are there fewer plant species in African rain forests?

Invited Review

Abstract

Although tropical rain forests represent the most species-rich terrestrial ecosystem on the planet, the three main rain forest regions (Neotropics, South-East Asia and continental Africa) are not equally diverse. Africa has been labeled the “odd man out” because of its perceived lower species diversity when compared to the Neotropics or South-East Asia. Understanding why, within a biome, certain regions have higher or lower species diversity provides important insights into the evolution of biodiversity. I review the evidence in favor of an “odd man out” pattern and the different hypotheses that have been advanced to explain and test this pattern using recent ecological, biogeographical and diversification studies. The “odd man out” pattern has yet to be formally tested using extensive inventory plot data (including non woody species) between all three major rain forest regions based on appropriate statistics in an area controlled manner. The lower species diversity is not the result of a single cause, but is probably linked to numerous intricate causes related to present and past events. Future comparative studies should combine numerous variables including novel ones such at plant functional diversity. Finally, though more extinction in Africa is apparent from the fossil record, it is still hard to precisely quantify to what degree extinction varied between the three major regions. Diversification studies of important tropical plant lineages tend to support higher speciation rates in the Neotropics and South-East Asia instead of higher extinction in Africa as the main cause explaining the differences in species diversity. The lower species diversity of African rain forests remains an understudied question with numerous preconceived and largely untested ideas for which we are still far from having a synthetic explanation. This review highlights that there are still very little intercontinental rain forest comparisons of plant species diversity hindering any solid conclusions. To better address this, an integrative approach involving archeologists, climatologists and biologists coupled with data from all three regions should be privileged.

Keywords

Odd man out Neotropics South-East Asia Diversification rates Extinction Fossil record Biogeography Palms 

Notes

Acknowledgments

I wish to thank Pete Lowry and Sylvain Razafimandimbison for inviting me to give a talk at the AETFAT 2014 conference in Stellenbosch South Africa where the ideas for this article were crystallized. I also thank Bill Baker for critically reading a previous version of this review. Hans ter Steege is also thanked for his comments in an earlier version. I thank Fabien Condamine, associate editor Hervé Sauquet and an anonymous reviewer for their excellent comments. Finally, I am grateful to Vincent Deblauwe for generating the maps in Fig. 2.

References

  1. Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002PubMedGoogle Scholar
  2. Alfaro ME et al (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci USA 106:13410–13414. doi:10.1073/pnas.0811087106 PubMedCentralPubMedGoogle Scholar
  3. Antonelli A, Sanmartín I (2011) Why are there so many plant species in the Neotropics? Taxon 60:403–414Google Scholar
  4. Antonelli A, Nylander JAA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci USA 106:9749–9754. doi:10.1073/pnas.0811421106 PubMedCentralPubMedGoogle Scholar
  5. Araújo MB, Nogués-Bravo D, Diniz-Filho JAF, Haywood AM, Valdes PJ, Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31:8–15Google Scholar
  6. Bacon CD, Michonneau F, Henderson AJ, McKenna MJ, Milroy AM, Simmons MP (2013a) Geographic and taxonomic disparities in species diversity: dispersal and diversification rates across Wallace’s line. Evolution 67:2058–2071. doi:10.1111/evo.12084 PubMedGoogle Scholar
  7. Bacon CD, Mora A, Wagner WL, Jaramillo CA (2013b) Testing geological models of evolution of the Isthmus of Panama in a phylogenetic framework. Bot J Linn Soc 171:287–300Google Scholar
  8. Baker TR et al. (2014) Fast demographic traits promote high diversification rates of Amazonian trees. Ecol Lett 17:527–536Google Scholar
  9. Baker WJ, Couvreur TLP (2013a) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J Biogeogr 40:274–285Google Scholar
  10. Baker WJ, Couvreur TLP (2013b) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. J Biogeogr 40:286–289Google Scholar
  11. Bardon L, Chamagne J, Dexter KG, Sothers CA, Prance GT, Chave J (2013) Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. Bot J Linn Soc 171:19–37Google Scholar
  12. Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leop 92:61–83Google Scholar
  13. Bartish IV, Antonelli A, Richardson JE, Swenson U (2011) Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). J Biogeogr 38:177–190. doi:10.1111/j.1365-2699.2010.02389.x Google Scholar
  14. Bjorholm S, Svenning JC, Skov F, Balslev H (2005) Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecol Biogeogr 14:423–429. doi:10.1111/j.1466-822x.2005.00167.x Google Scholar
  15. Blach-Overgaard A, Kissling WD, Dransfield J, Balslev H, Svenning J-C (2013) Multimillion-year climatic effects on palm species diversity in Africa. Ecology 94:2426–2435. doi:10.1890/12-1577.1 PubMedGoogle Scholar
  16. Buerki S, Forest F, Stadler T, Alvarez N (2013) The abrupt climate change at the Eocene-Oligocene boundary and the emergence of South-East Asia triggered the spread of sapindaceous lineages. Ann Bot (Oxford) 112:151–160Google Scholar
  17. Chanderbali AS, van der Werff H, Renner SS (2001) Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard 88:104–134Google Scholar
  18. Christenhusz MJM, Chase MW (2013) Biogeographical patterns of plants in the Neotropics—dispersal rather than plate tectonics is most explanatory. Bot J Linn Soc 171:277–286. doi:10.1111/j.1095-8339.2012.01301.x Google Scholar
  19. Cody S, Richardson JE, Rull V, Ellis C, Pennington RT (2010) The Great American biotic interchange revisited. Ecography 33:326–332. doi:10.1111/j.1600-0587.2010.06327.x Google Scholar
  20. Connor EF, McCoy ED (1979) The statistics and biology of the species–area relationship. Amer Naturalist 113:791–833. doi:10.2307/2460305 Google Scholar
  21. Cornell HV (2013) Is regional species diversity bounded or unbounded? Biol Rev 88:140–165PubMedGoogle Scholar
  22. Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11:48PubMedCentralPubMedGoogle Scholar
  23. Couvreur TLP, Chatrou LW, Sosef MSM, Richardson JE (2008) Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. BMC Biol 6:54PubMedCentralPubMedGoogle Scholar
  24. Couvreur TLP, Forest F, Baker WJ (2011a) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 9:44PubMedCentralPubMedGoogle Scholar
  25. Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, Richardson JE, Erkens RHJ (2011b) Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. J Biogeogr 38:664–680. doi:10.1111/j.1365-2699.2010.02434.x Google Scholar
  26. Couvreur TLP, Porter-Morgan H, Wieringa JJ, Chatrou LW (2011c) Little ecological divergence associated with speciation in two African rain forest tree genera. BMC Evol Biol 11:296PubMedCentralPubMedGoogle Scholar
  27. Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TG (2004) Environmental energy and evolutionary rates in flowering plants. Proc Roy Soc London Ser B Biol Sci 271:2195–2200Google Scholar
  28. Davis CC, Bell CD, Mathews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci USA 99:6833–6837. doi:10.1073/pnas.102175899 PubMedCentralPubMedGoogle Scholar
  29. Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Amer Naturalist 165:E36–E65Google Scholar
  30. De Cáceres M et al (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecol Biogeogr 21:1191–1202Google Scholar
  31. Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655Google Scholar
  32. Dick CW, Abdul-Salim K, Bermingham E (2003) Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Amer Naturalist 162:691–703Google Scholar
  33. Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum: the evolution and classification of palms. Kew Publishing, KewGoogle Scholar
  34. Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120PubMedCentralPubMedGoogle Scholar
  35. Erkens RHJ, Chatrou LW, Maas JW, van der Niet T, Savolainen V (2007) A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. Molec Phylogen Evol 44:399–411Google Scholar
  36. Erkens RHJ, Maas JW, Couvreur TLP (2009) From Africa via Europe to South America: migrational route of a species-rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae). J Biogeogr 36:2338–2352Google Scholar
  37. Erkens RHJ, Chatrou LW, Couvreur TLP (2012) Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales). Bot J Linn Soc 169:117–134. doi:10.1111/j.1095-8339.2012.01223.x Google Scholar
  38. Evans KL, Warren PH, Gaston KJ (2005) Species–energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev 80:1–25PubMedGoogle Scholar
  39. FAO (2001) The state of the world’s forests. Rome, Italy Food and Agriculture Organization of the United Nations, p 181Google Scholar
  40. Fine PV, Ree RH (2006) Evidence for a time-integrated species–area effect on the latitudinal gradient in tree diversity. Amer Naturalist 168:796–804Google Scholar
  41. Fjeldså J, Lovett JC (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centers. Biodivers Conserv 6(325):346Google Scholar
  42. Francis AP, Currie DJ (2003) A globally consistent richness–climate relationship for angiosperms. Amer Naturalist 161:523–536Google Scholar
  43. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227PubMedGoogle Scholar
  44. Gentry A (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Missouri Bot Gard 69:557–593Google Scholar
  45. Gentry A (1992) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:19–28Google Scholar
  46. Gentry A (1993) Diversity and floristic composition of lowland tropical forest in Africa and South America. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 500–547Google Scholar
  47. Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149–156Google Scholar
  48. Givnish TJ, Renner SS (2004) Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. Int J Pl Sci 165:S1–S6Google Scholar
  49. Gonmadje CF, Doumenge C, Sunderland TCH, Balinga MPB, Sonk Bonaventure (2012) Analyse phytogeographique des forets d’Afrique Centrale: le cas du massif de Ngovayang (Cameroun). Pl Ecol Evol 145:152–164. doi:10.5091/plecevo.2012.573 Google Scholar
  50. Guillaumet J-L, Chevillotte H, Valton C (2009) Carte des forêts tropicales humides africaines au 1: 6 000 000. IRD, BondyGoogle Scholar
  51. Hall R (2009) Southeast Asia’s changing palaeogeography. Blumea 54:148–161. doi:10.3767/000651909x475941 Google Scholar
  52. Hamon N, Sepulchre P, Lefebvre V, Ramstein G (2013) The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma). Clim Past 9Google Scholar
  53. Haywood AM, Dowsett HJ, Valdes PJ, Lunt DJ, Francis JE, Sellwood BW (2009) Introduction. Pliocene climate, processes and problems. Philos Trans Ser A 367:3–17Google Scholar
  54. Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: Pristine Forest or Cultural Parkland? Science 301:1710–1714. doi:10.1126/science.1086112 PubMedGoogle Scholar
  55. Hickerson MJ et al (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molec Phylogen Evol 54:291–301. doi:10.1016/j.ympev.2009.09.016 Google Scholar
  56. Hoorn C et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931. doi:10.1126/science.1194585 PubMedGoogle Scholar
  57. Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339PubMedCentralPubMedGoogle Scholar
  58. Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Missouri Bot Gard 86:590–643Google Scholar
  59. Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx V (2009) Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Molec Phylogen Evol 52:806–824. doi:10.1016/j.ympev.2009.04.013 Google Scholar
  60. Jansson R (2003) Global patterns in endemism explained by past climatic change. Proc Roy Soc London Ser B Biol Sci 270:583–590Google Scholar
  61. Jansson R, Davies TJ (2008) Global variation in diversification rates of flowering plants: energy vs. climate change. Ecol Lett 11:173–183PubMedGoogle Scholar
  62. Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Rev Ecol Syst 33:741–777Google Scholar
  63. Jaramillo C, Rueda MJ, Mora G (2006) Cenozoic plant diversity in the neotropics. Science 311:1893–1896. doi:10.1126/science.1121380 PubMedGoogle Scholar
  64. Jaramillo C et al (2010) The origin of the modern Amazon rainforest: implications from the palynological and paleobotanical record. In: Hoorn MC, Wesselingh FP (eds) Amazonia, landscape and species evolution. Blackwell, Oxford, pp 317–334Google Scholar
  65. Jetz W, Fine PV (2012) Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10:e1001292PubMedCentralPubMedGoogle Scholar
  66. Kenfack D, Thomas DW, Chuyong G, Condit R (2007) Rarity and abundance in a diverse African forest. Biodivers Conserv 16:2045–2074Google Scholar
  67. Kisel Y, McInnes L, Toomey NH, Orme CDL (2011) How diversification rates and diversity limits combine to create large-scale species–area relationships. Philos Trans Ser B 366:2514–2525Google Scholar
  68. Kissling WD, Eiserhardt WL, Baker WJ, Borchsenius F, Couvreur TLP, Balslev H, Svenning J-C (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc Natl Acad Sci USA 109:7379–7384. doi:10.1073/pnas.1120467109 PubMedCentralPubMedGoogle Scholar
  69. Klopper RR, Gautier L, Chatelain C, Smith GF, Spichiger R (2007) Floristics of the angiosperm flora of Sub-Saharan Africa: an analysis of the African Plant Checklist and Database. Taxon 56:201–208Google Scholar
  70. Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930PubMedCentralPubMedGoogle Scholar
  71. Kreft H, Sommer JH, Barthlott W (2006) The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29:21–30Google Scholar
  72. Kress JW, Specht CD (2006) The evolutionary and biogeographic origin of the tropical monocot order Zingiberales. Aliso 22:619–630Google Scholar
  73. Küper W, Sommer JH, Lovett JC, Barthlott W (2006) Deficiency in African plant distribution data—missing pieces of the puzzle. Bot J Linn Soc 150:355–368. doi:10.1111/j.1095-8339.2006.00494.x Google Scholar
  74. Lavin M, Thulin M, Labat J-N, Pennington RT (2000) Africa, the odd man out: molecular biogeography of dalbergioid legumes (Fabaceae) suggests otherwise. Syst Bot 25:449–467Google Scholar
  75. Linder HP (2001) Plant diversity and endemism in sub-Saharan tropical Africa. J Biogeogr 28:169–182Google Scholar
  76. Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J Biogeogr 39:1189–1205Google Scholar
  77. Lohman DJ et al (2011) Biogeography of the Indo-Australian archipelago. Annual Rev Ecol Evol Sys 42:205–226Google Scholar
  78. Losos JB, Schluter D (2000) Analysis of an evolutionary species–area relationship. Nature 408:847–850PubMedGoogle Scholar
  79. Lovett JC, Marchant R, Marshall AR, Barber J (2007) Tropical Moist Forests. In: Hester RE, Harrison RM (eds) Biodiversity under threat, vol 25. Royal Society of Chemistry, Cambridge, pp 161–192Google Scholar
  80. Maas PJM, Westra LYTh, Chatrou LW et al (2003) Duguetia (Annonaceae). Flora Neotropica, Monograph 88:1–274Google Scholar
  81. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  82. Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans Ser B 359:311–329Google Scholar
  83. Manns U, Wikström N, Taylor CM, Bremer B (2012) Historical biogeography of the predominantly neotropical subfamily Cinchonoideae (Rubiaceae): into or out of America? Int J Pl Sci 173:261–286Google Scholar
  84. Massoni J (2014) Phylogeny, molecular dating, and floral evolution of Magnoliidae (Angiospermae). Université Paris SudGoogle Scholar
  85. Mayaux P et al (2013) State and evolution of the African rainforests between 1990 and 2010. Philos Trans Ser B 368. doi:10.1098/rstb.2012.0300
  86. McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557. doi:10.1016/j.tree.2007.09.003 PubMedGoogle Scholar
  87. McGlone MS (1996) When history matters: scale, time, climate and tree diversity. Global Ecol Biogeogr Lett 5:309–314Google Scholar
  88. McMichael CH, Piperno DR, Bush MB, Silman MR, Zimmerman AR, Raczka MF, Lobato LC (2012) Sparse Pre-Columbian Human Habitation in Western Amazonia. Science 336:1429–1431. doi:10.1126/science.1219982 PubMedGoogle Scholar
  89. McPeek MA, Brown JM (2007) Clade age and not diversification rate explains species richness among animal taxa. Amer Naturalist 169:E97–E106Google Scholar
  90. Mittelbach GG et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331. doi:10.1111/j.1461-0248.2007.01020.x PubMedGoogle Scholar
  91. Moore HEJ (1973) Palms in the tropical forest ecosystems of Africa and South America. Smithsonian Institution Press, WashingtonGoogle Scholar
  92. Morley RJ (1998) Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Leiden, pp 211–234Google Scholar
  93. Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, New YorkGoogle Scholar
  94. Morley RJ (2007) Cretaceous and tertiary climate change and the past distribution of megathermal rainforests. In: Bush MB, Flenley J (eds) Tropical rainforest responses to climatic changes. Praxis Publishing, Chichester, pp 1–31Google Scholar
  95. Morley RJ (2012) A review of the Cenozoic paleoclimatic history of Southeast Asia. In: Gower D, Johnson KG, Richardson JE, Rosen B, Rüber L, Williams ST (eds) Biotic evolution and environmental change in Southeast Asia, vol 82., Cambridge University PressCambridge, UK, pp 79–114Google Scholar
  96. Morley R, Dick C (2003) Missing fossils, molecular clocks, and the origin of the Melastomataceae. Amer J Bot 90:1638–1644Google Scholar
  97. Morlon H (2014) Phylogenetic approaches for studying diversification. Ecol Lett 17:508–525PubMedGoogle Scholar
  98. Morlon H, Parsons TL, Plotkin JB (2011) Reconciling molecular phylogenies with the fossil record. Proc Natl Acad Sci USA 108:16327–16332PubMedCentralPubMedGoogle Scholar
  99. Muellner AN, Savolainen V, Samuel R, Chase MW (2006) The mahogany family “out-of-Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Molec Phylogen Evol 40:236–250Google Scholar
  100. Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skr 55:521–531Google Scholar
  101. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedGoogle Scholar
  102. Nauheimer L, Boyce PC, Renner SS (2012) Giant taro and its relatives: a phylogeny of the large genus Alocasia (Araceae) sheds light on Miocene floristic exchange in the Malesian region. Molec Phylogen Evol 63:43–51Google Scholar
  103. Olson DM et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938. doi:10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2Google Scholar
  104. Pan AD, Jacobs BF, Dransfield J, Baker WJ (2005) The fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28–27 Mya) of north-western Ethiopia. Bot J Linn Soc 151:69–81Google Scholar
  105. Parmentier I et al (2007) The odd man out? Might climate explain the lower tree alpha-diversity of African rain forests relative to Amazonian rain forests? J Ecol 95:1058–1071Google Scholar
  106. Pennington RT, Dick CW (2004) The role of immigrants in the assembly of the South American rainforest tree flora. Philos Trans Ser B 359:1611–1622Google Scholar
  107. Plana V (2004) Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos Trans Ser B 359:1585–1594Google Scholar
  108. Plana V, Gascoigne A, Forrest LL, Harris D, Pennington RT (2004) Pleistocene and pre-Pleistocene Begonia speciation in Africa. Molec Phylogen Evol 31:449–461Google Scholar
  109. Pross J et al (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77PubMedGoogle Scholar
  110. Qian H, Ricklefs RE (2004) Taxon richness and climate in angiosperms: is there a globally consistent relationship that precludes region effects? Amer Naturalist 163:773–779Google Scholar
  111. Rabosky DL (2010) Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816–1824. doi:10.1111/j.1558-5646.2009.00926.x PubMedGoogle Scholar
  112. Rabosky DL, Slater GJ, Alfaro ME (2012) Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biol 10:e1001381. doi:10.1371/journal.pbio.1001381 PubMedCentralPubMedGoogle Scholar
  113. Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, Alfaro ME (2013) Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature communications 4Google Scholar
  114. Rakotoarinivo M, Blach-Overgaard A, Baker WJ, Dransfield J, Moat J, Svenning J-C (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proc R Soc B-Biol Sci 280:20123048Google Scholar
  115. Rapini A, van den Berg C, Liede-Schumann S (2007) Diversifcation of Asclepiadoideae (Apocynaceae) in the New World. Ann Missouri Bot Gard 94:407–422. doi:10.3417/0026-6493(2007)94[407:doaait]2.0.co;2
  116. Raven HP, Axelrod DI (1974) Angiosperm biodiversity and past continental movements. Ann Missouri Bot Gard 61:539–673Google Scholar
  117. Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends Plant Sci 10:550–558PubMedGoogle Scholar
  118. Renner SS, Clausing G, Meyer K (2001) Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. Amer J Bot 88:1290–1300Google Scholar
  119. Richards PW (1973) Africa, the ‘Odd man out’. In: Meggers BJ, Ayensu ES, Duckworth WD (eds) Tropical forest ecosystems of Africa and South America: a comparative review. Smithsonian Institution Press, Washintong DCGoogle Scholar
  120. Richards PW (1996) The tropical rain forest: an ecological study, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  121. Richardson JE, Costion C, Muellner AN (2012) The Malasian floristic interchange: plant migration patterns across Wallace’s line. In: Gower D, Johnson KG, Richardson JE, Rosen B, Rüber L, Williams ST (eds) Biotic evolution and environmental change in Southeast Asia, vol 82. Cambridge University Press, Cambridge, pp 138–163Google Scholar
  122. Richardson JE et al (2014) The influence of tectonics, sea-level changes and dispersal on migration and diversification of Isonandreae (Sapotaceae). Bot J Linn Soc 174:130–140. doi:10.1111/boj.12108 Google Scholar
  123. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171PubMedGoogle Scholar
  124. Ricklefs RE, Renner SS (2012) Global correlations in tropical tree species richness and abundance reject neutrality. Science 335:464–467PubMedGoogle Scholar
  125. Rolland J, Condamine FL, Jiguet F, Morlon H (2014) Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol 12:e1001775. doi:10.1371/journal.pbio.1001775 PubMedCentralPubMedGoogle Scholar
  126. Roy MS (1997) Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc Roy Soc London Ser B Biol Sci 264:1337–1344Google Scholar
  127. Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning J-C (2011) The influence of late quaternary climate-change velocity on species endemism. Science 334:660–664. doi:10.1126/science.1210173 PubMedGoogle Scholar
  128. Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V (2009) Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc Natl Acad Sci USA 106:221–225. doi:10.1073/pnas.0805607106 PubMedCentralPubMedGoogle Scholar
  129. Stadler T (2013) Recovering speciation and extinction dynamics based on phylogenies. J Evol Biol 26:1203–1219PubMedGoogle Scholar
  130. Stebbins GL (1974) Flowering plants: evolution above the species level. Harvard University Press, Cambridge, MAGoogle Scholar
  131. Stephens PR, Wiens JJ (2003) Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Amer Naturalist 161:112–128. doi:10.1086/345091 Google Scholar
  132. Stropp J, Ter Steege H, Malhi Y (2009) Disentangling regional and local tree diversity in the Amazon. Ecography 32:46–54Google Scholar
  133. Su Y, Saunders R (2009) Evolutionary divergence times in the Annonaceae: evidence of a Late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea. BMC Evol Biol 9:153PubMedCentralPubMedGoogle Scholar
  134. Swenson NG (2013) The assembly of tropical tree communities—the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36:264–276. doi:10.1111/j.1600-0587.2012.00121.x Google Scholar
  135. ter Steege H et al (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447PubMedGoogle Scholar
  136. ter Steege H et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:6156. doi:10.1126/science.1243092 Google Scholar
  137. Thomas WW (1999) Conservation and monographic research on the flora of Tropical America. Biodivers Conserv 8:1007–1015. doi:10.1023/a:1008857429787 Google Scholar
  138. Thomas D et al (2012) West to east dispersal and subsequent rapid diversification of the mega diverse genus Begonia (Begoniaceae) in the Malesian archipelago. J Biogeogr 39:98–113Google Scholar
  139. Thorne RF (1973) Floristic relationships between tropical Africa and tropical America. In: Meggers B, Ayensu E, Duckworth W (eds) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Instn Press, Washington, pp 27–47Google Scholar
  140. Tolley KA, Townsend TM, Vences M (2013) Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proc Roy Soc London Ser B Biol Sci 280:20130184Google Scholar
  141. van Gemerden BS, Olff H, Parren MP, Bongers F (2003) The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. J Biogeogr 30:1381–1390Google Scholar
  142. van Steenis CGGJ (1962) The land bridge theory in botany. Blumea 11:235–542Google Scholar
  143. Vences M, Wollenberg KC, Vieites DR, Lees DC (2009) Madagascar as a model region of species diversification. Trends Ecol Evol 24:456–465PubMedGoogle Scholar
  144. Wallace A (1876) The geographic distribution of animals. Hafner, New YorkGoogle Scholar
  145. Wallace AR (1878) Tropical nature, and other essays. Macmillian, LondonGoogle Scholar
  146. Wang W et al (2012) Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. New Phytol 195:470–478. doi:10.1111/j.1469-8137.2012.04158.x PubMedGoogle Scholar
  147. Wasser SK, Lovett JC (1993) Biogeography and ecology of the rainforests of Eastern Africa. Cambridge University Press, CambridgeGoogle Scholar
  148. Whitmore TC (1998) An introduction to tropical rain forests. Clarendon Press, OxfordGoogle Scholar
  149. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470Google Scholar
  150. Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Quart Rev Biol 86:75–96PubMedGoogle Scholar
  151. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedGoogle Scholar
  152. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283PubMedGoogle Scholar
  153. Zerega NJC, Clement WL, Datwyler SL, Weiblen GD (2005) Biogeography and divergence times in the mulberry family (Moraceae). Molec Phylogen Evol 37:402–416. doi:10.1016/j.ympev.2005.07.004 Google Scholar
  154. Zhou L, Su YCF, Thomas DC, Saunders RMK (2012) ‘Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). J Biogeogr 39:322–335. doi:10.1111/j.1365-2699.2011.02598.x Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Institut de Recherche pour le DéveloppementUMR-DIADEMontpellier Cedex 5France
  2. 2.Laboratoire de Botanique systématique et d’Ecologie, Département des Sciences BiologiquesUniversité de Yaoundé I, Ecole Normale SupérieureYaoundéCameroon

Personalised recommendations