Plant Systematics and Evolution

, Volume 301, Issue 5, pp 1411–1423 | Cite as

Quaternary radiation of bifid toadflaxes (Linaria sect. Versicolores) in the Iberian Peninsula: low taxonomic signal but high geographic structure of plastid DNA lineages

  • Mario Fernández-Mazuecos
  • Pablo Vargas
Original Article


Phylogeographic analysis provides insights into the micro-evolutionary mechanisms driving recent radiations. Here we conducted a phylogeographic analysis of the Iberian clade of Linaria subsect. Versicolores. This lineage includes eight species and subspecies endemic or subendemic to the Iberian Peninsula that diversified in the Quaternary. We obtained 159 sequences of three plastid DNA regions from 53 individuals of the study group representing all recognized taxa. Phylogenetic, haplotype network, dating and population genetic analyses were conducted. In addition, the radiation hypothesis (common ancestry and rapid speciation) was tested. The results revealed two major clades that diverged in the Pleistocene. Low taxonomic signal of plastid DNA sequences was found as a result of rapid diversification. Indeed, the study group is herein described as an evolutionary radiation because of its common ancestry and diversification rates in line with those of other recent plant radiations. Interestingly, a high geographic structure of plastid DNA lineages was revealed, with a major genetic discontinuity separating south-eastern populations from those of the rest of Iberia. Based on dating results, we rule out a marine barrier as the cause behind this discontinuity, and hypothesize a role of edaphic specialization in differentiation of the two major clades. These results provide relevant information on the evolutionary dynamics of recent plant radiations in the western Mediterranean hotspot.


Radiation Plastid DNA haplotypes Edaphic isolation Mediterranean Phylogeography Linaria 



The authors thank Emilio Cano for laboratory assistance; Llorenç Sáez for providing plant material of L. viscosa subsp. crassifolia; Enrique Sánchez-Gullón, Belén Estébanez, Nagore G. Medina, José Luis Blanco-Pastor, Joaquín Ramírez, Enrique Rico, Francisco Valtueña, Isabel Marques and the MA, RNG and UPOS herbaria for additional plant materials or localities; José Luis Blanco-Pastor and Isabel Liberal for comments that improved the quality of the manuscript. This work was supported by the Spanish Ministry of Science and Innovation through project CGL2009-10031 and by the Spanish Ministry of Education through a FPU fellowship (AP2007-01841) to M.F.-M.

Supplementary material

606_2014_1161_MOESM1_ESM.pdf (19 kb)
Supplementary material 1 (PDF 19 kb) Online Resource 1. GenBank accession numbers of plastid DNA sequences of the Iberian clade of Linaria subsect. Versicolores. Individuals are coded as in Table 1 and Fig. 1


  1. Albaladejo RG, Fuertes Aguilar J, Aparicio A, Nieto Feliner G (2005) Contrasting nuclear-plastidial phylogenetic patterns in the recently diverged Iberian Phlomis crinita and P. lychnitis lineages (Lamiaceae). Taxon 54:987–998CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Balao F, Valente LM, Vargas P, Herrera J, Talavera S (2010) Radiative evolution of polyploid races of the Iberian carnation Dianthus broteri (Caryophyllaceae). New Phytol 187:542–551CrossRefPubMedGoogle Scholar
  4. Bittkau C, Comes HP (2009) Molecular inference of a late Pleistocene diversification shift in Nigella s. lat. (Ranunculaceae) resulting from increased speciation in the Aegean archipelago. J Biogeogr 36:1346–1360CrossRefGoogle Scholar
  5. Blanco-Pastor JL, Vargas P (2013) Autecological traits determined two evolutionary strategies in Mediterranean plants during the Quaternary: low differentiation and range expansion versus geographical speciation in Linaria. Molec Ecol 22:5651–5668CrossRefGoogle Scholar
  6. Blanco-Pastor JL, Vargas P, Pfeil BE (2012) Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS One 7:e39089CrossRefPubMedCentralPubMedGoogle Scholar
  7. Carstens BC, Knowles LL (2007) Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers. Syst Biol 56:400–411CrossRefPubMedGoogle Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1659CrossRefGoogle Scholar
  9. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer J Bot 75:1443–1458CrossRefGoogle Scholar
  10. Cummings MP, Neel MC, Shaw KL (2008) A genealogical approach to quantifying lineage divergence. Evolution 62:2411–2422CrossRefPubMedGoogle Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772–772CrossRefGoogle Scholar
  12. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710CrossRefGoogle Scholar
  13. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious version 5.0. Available at
  14. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973CrossRefPubMedCentralPubMedGoogle Scholar
  15. Emberger L (1930) Materiaux pour l’étude de la flore et de la végétation du Maroc. Fascicule 1. Bull Soc Hist Nat Afrique N 21:101–114Google Scholar
  16. Escudero M, Valcárcel V, Vargas P, Luceño M (2008) Evolution in Carex L. sect. Spirostachyae (Cyperaceae): a molecular and cytogenetic approach. Org Divers Evol 7:271–291CrossRefGoogle Scholar
  17. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle. Available at
  18. Fernández-Mazuecos M, Vargas P (2010) Ecological rather than geographical isolation dominates Quaternary formation of Mediterranean Cistus species. Molec Ecol 19:1381–1395CrossRefGoogle Scholar
  19. Fernández-Mazuecos M, Vargas P (2011) Historical isolation versus recent long-distance connections between Europe and Africa in bifid toadflaxes (Linaria sect. Versicolores). PLoS One 6:e22234CrossRefPubMedCentralPubMedGoogle Scholar
  20. Fernández-Mazuecos M, Vargas P (2013) Congruence between distribution modelling and phylogeographical analyses reveals Quaternary survival of a toadflax species (Linaria elegans) in oceanic climate areas of a mountain ring range. New Phytol 198:1274–1289CrossRefPubMedGoogle Scholar
  21. Fernández-Mazuecos M, Blanco-Pastor JL, Gómez JM, Vargas P (2013a) Corolla morphology influences diversification rates in bifid toadflaxes (Linaria sect. Versicolores). Ann Bot (Oxford) 112:1705–1722CrossRefGoogle Scholar
  22. Fernández-Mazuecos M, Blanco-Pastor JL, Vargas P (2013b) A phylogeny of toadflaxes (Linaria Mill.) based on nuclear internal transcribed spacer sequences: systematic and evolutionary consequences. Int J Pl Sci 174:234–249CrossRefGoogle Scholar
  23. Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253:769–778CrossRefPubMedGoogle Scholar
  24. Guzmán B, Lledó MD, Vargas P (2009) Adaptive radiation in Mediterranean Cistus (Cistaceae). PLoS One 4:e6362CrossRefPubMedCentralPubMedGoogle Scholar
  25. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec Ecol 8:521–523Google Scholar
  26. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131CrossRefPubMedGoogle Scholar
  27. Hewitt GM (1988) Hybrid zones–natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167CrossRefPubMedGoogle Scholar
  28. Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014PubMedCentralPubMedGoogle Scholar
  29. Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339CrossRefPubMedCentralPubMedGoogle Scholar
  30. Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Trends Ecol Evol 15:250–255CrossRefPubMedGoogle Scholar
  31. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066CrossRefPubMedCentralPubMedGoogle Scholar
  32. Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Syst Biol 56:887–895CrossRefPubMedGoogle Scholar
  33. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  34. Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780CrossRefPubMedGoogle Scholar
  35. Maire R (1941) Contributions à l’étude de la flore de L’Afrique du Nord. Fascicule 30. Bull Soc Hist Nat Afrique N 31:99–114Google Scholar
  36. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190CrossRefPubMedGoogle Scholar
  37. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Missouri Bot Gard 84:112–127CrossRefGoogle Scholar
  38. Meléndez Hevia I (2004) Geología de España: una historia de seiscientos millones de años. Ediciones Rueda, AlcorcónGoogle Scholar
  39. Monmonier MS (1973) Maximum difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261CrossRefGoogle Scholar
  40. Mutke J, Sommer JH, Kreft H, Kier G, Barthlott W (2011) Vascular plant diversity in a changing world: global centres and biome-specific patterns. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Berlin, pp 83–96CrossRefGoogle Scholar
  41. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  42. Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Missouri Bot Gard 82:176–193CrossRefGoogle Scholar
  43. Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481CrossRefGoogle Scholar
  44. Ortiz MÁ, Tremetsberger K, Stuessy TF, Terrab A, García-Castaño JL, Talavera S (2009) Phylogeographic patterns in Hypochaeris section Hypochaeris (Asteraceae, Lactuceae) of the western Mediterranean. J Biogeogr 36:1384–1397CrossRefGoogle Scholar
  45. Pérez-García FJ, Medina-Cazorla JM, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Salmerón-Sánchez E, Mota JF (2012) Iberian Baetic endemic flora and the implications for a conservation policy. Ann Bot Fennici 49:43–54CrossRefGoogle Scholar
  46. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefPubMedGoogle Scholar
  47. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molec Ecol 14:689–701CrossRefGoogle Scholar
  48. Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46:471–478CrossRefGoogle Scholar
  49. Rambaut A, Drummond AJ (2007) Tracer version 1.4. Available at
  50. Rodríguez-Sánchez F, Pérez-Barrales R, Ojeda F, Vargas P, Arroyo J (2008) The Strait of Gibraltar as a melting pot for plant biodiversity. Quaternary Sci Rev 27:2100–2117CrossRefGoogle Scholar
  51. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedCentralPubMedGoogle Scholar
  52. Sáez L, Bernal M (2009) Linaria Mill. In: Castroviejo S, Herrero A, Benedí C, Rico E, Güemes J (eds) Flora iberica, vol 13. CSIC, Madrid, pp 232–324Google Scholar
  53. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  54. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288CrossRefGoogle Scholar
  55. Sturmbauer C, Husemann M, Danley PD (2011) Explosive speciation and adaptive radiation of East African cichlid fishes. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Berlin, pp 333–362CrossRefGoogle Scholar
  56. Suc JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432CrossRefGoogle Scholar
  57. Sutton DA (1988) A revision of the tribe Antirrhineae. Oxford University Press, OxfordGoogle Scholar
  58. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633Google Scholar
  59. Terrab A, Talavera S, Arista M, Paun O, Stuessy TF, Tremetsberger K (2007) Genetic diversity at chloroplast microsatellites (cpSSRs) and geographic structure in endangered West Mediterranean firs (Abies spp., Pinaceae). Taxon 56:409–416Google Scholar
  60. Tsitrone A, Kirkpatrick M, Levin DA (2003) A model for chloroplast capture. Evolution 57:1776–1782CrossRefPubMedGoogle Scholar
  61. Valdés B (1970) Taxonomía experimental del género Linaria V. Hibridación interespecífica. Acta Phytotax Barcinon 4:1–24Google Scholar
  62. Valente LM, Savolainen V, Vargas P (2010) Unparalleled rates of species diversification in Europe. Proc Roy Soc London B Biol Sci 277:1489–1496CrossRefGoogle Scholar
  63. Vargas P, Carrió E, Guzmán B, Amat E, Güemes J (2009) A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms. J Biogeogr 36:1297–1312CrossRefGoogle Scholar
  64. Vargas P, Valente LM, Blanco-Pastor JL, Liberal I, Guzmán B, Cano E, Forrest A, Fernández-Mazuecos M (2014) Testing the biogeographical congruence of palaeofloras using molecular phylogenetics: snapdragons and the Madrean-Tethyan flora. J Biogeogr 41:932–943CrossRefGoogle Scholar
  65. Viano J (1973) Resultats caryologiques de quelques especes de Linaria et Chaenorrhinum recoltees au sud de la Peninsule Iberique. Bol Soc Brot Supl 47:323–331Google Scholar
  66. Viano J (1978a) Croisements experimentaux interspecifiques au sein du genre Linaria. Caryologia 31:383–425CrossRefGoogle Scholar
  67. Viano J (1978b) Les linaires à graines aptères du bassin méditerranéen occidental. 1. Linaria sect. Versicolores. Candollea 33:33–88Google Scholar
  68. Willyard A, Cronn R, Liston A (2009) Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molec Phylogenet Evol 52:498–511CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Real Jardín Botánico (RJB-CSIC)MadridSpain
  2. 2.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations