Advertisement

Plant Systematics and Evolution

, Volume 301, Issue 4, pp 1123–1134 | Cite as

Phylogenetic relationships in Opuntia (Cactaceae, Opuntioideae) from southern South America

  • María F. Realini
  • Graciela E. González
  • Fabián Font
  • Pablo I. Picca
  • Lidia Poggio
  • Alexandra M. GottliebEmail author
Original Article

Abstract

The patterns of relationships between species of Opuntia from southern South America are scarcely known in spite of the importance of this region as a diversification center for the Cactaceae. This paper contributes to the better understanding of the genetic and phylogenetic relationships of 15 Opuntia species from Argentina, Bolivia, Brazil, Paraguay, and Uruguay by generating new genetic data through Inter-Simple Sequence Repeat (ISSR) genotyping and the sequencing of plastid intergenic spacers trnL-trnF and psbJ-petA. The species surveyed are: O. anacantha, O. arechavaletae, O. aurantiaca, O. bonaerensis, O. colubrina, O. discolor, O. elata, O. megapotamica, O. monacantha, O. penicilligera, O. quimilo, O. salmiana, O. schickendantzii, O. sulphurea, and O. ventanensis. The genetic distance-based analysis of 110 ISSR bands, applying the Neighbor-Joining and NeighborNet algorithms, evidenced considerable intraspecific variation in O. aurantiaca, O. elata, O. discolor, and O. salmiana. The emergent clustering pattern and the species assignment to taxonomic series show a general agreement for Armatae and Aurantiacae. The phylogenetic relationships were investigated via haplotype network and maximum likelihood approaches, within a broader sampling that involves most species currently accepted for South America, and samples from throughout the American continent. Hence, 15 haplotypes are recognized for southern South American opuntias whereas eight haplotypes are established for Northern Hemisphere opuntias. Biparentally and maternally inherited genetic data yield partially consistent results, giving genetic support for morphologically defined taxonomic series.

Keywords

Cacti ISSR Plastid intergenic spacers Phylogenetic analyses 

Notes

Acknowledgments

Several grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 0342), the Universidad de Buenos Aires (EX178 and 20020100100859), the Agencia Nacional de Promoción Científica y Técnológica (PICT 2010-1665) and funding from the International Organization for Succulent Plant Study (IOS) are gratefully acknowledged.

Supplementary material

606_2014_1154_MOESM1_ESM.doc (53 kb)
Supplementary material 1 (DOC 53 kb)
606_2014_1154_MOESM2_ESM.doc (30 kb)
Supplementary material 2 (DOC 31 kb)
606_2014_1154_MOESM3_ESM.doc (102 kb)
Supplementary material 3 (DOC 102 kb)

References

  1. Anderson EF (2001) The Cactus family. Timber Press, PortlyGoogle Scholar
  2. Arakaki M, Pascal-Antonie C, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards JE (2011) Contemporaneous and recent radiations of the world’s major succulent plant lineages. PNAS USA 108:8379–8384CrossRefPubMedCentralPubMedGoogle Scholar
  3. Arias S, Terrazas T, Arreola-Nava F, Vázquez-Sánchez HJ, Cameron MK (2005) Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. J Pl Res 118:317–328CrossRefPubMedGoogle Scholar
  4. Baker MA, Pinkava DJ (1987) A cytological and morphometric analysis of triploid apomict, O. x kelvinensis (subgenus Cylindropuntia, Cactaceae). Brittonia 39:387–401CrossRefGoogle Scholar
  5. Baker MA, Pinkava DJ (1999) A new Arizona hybrid cholla, Opuntia × campii (Cactaceae). Cact Succ J 71:320–322Google Scholar
  6. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molec Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  7. Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Cladistics 27:1–20CrossRefGoogle Scholar
  8. Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants. Springer, Berlin, pp 161–197Google Scholar
  9. Benson LD, Walkington DL (1965) The southern California prickly pears: invasion, adulteration, and trial-by-fire. Ann Missouri Bot Gard 52:262–273CrossRefGoogle Scholar
  10. Bonatelli IAS, Zappi DC, Taylor NP, Moraes EM (2013) Usefulness of cpDNA markers for phylogenetic and phylogeographic analyses of closely-related cactus species. Genet Molec Res 12:4579–4585Google Scholar
  11. Boyle TH, Anderson E (2002) Biodiversity and conservation. In: Nobel PS (ed) Cacti, biology and uses. University of California Press, Los Angeles, pp 274–316Google Scholar
  12. Britton NL, Rose JN (1919) The Cactaceae, vol 1. Carnegie Institution of Washington, WashingtonGoogle Scholar
  13. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Molec Biol Evol 21:255–265CrossRefPubMedGoogle Scholar
  14. Butterworth CA, Wallace RS (2004) Phylogenetic studies of Mammillaria (Cactaceae) insights from chloroplast sequence variation and hypothesis testing using the parametric bootstrap. Amer J Bot 91:1086–1098CrossRefPubMedGoogle Scholar
  15. Cariaga KA, Lewis CE, Maschinski J, Wright SJ, Francisco-Ortega J (2005) Patterns of genetic diversity in the critically endangered Florida Key endemic Consolea corallicola Small (Cactaceae): evidence from Inter-Simple Sequence Repeat (ISSRs) DNA polymorphisms. Caribbean J Sci 41:225–233Google Scholar
  16. Caruso M, Curró S, Las Casas G, La Malfa S, Gentile A (2010) Microsatellite markers help to assess genetic diversity among Opuntia ficus-indica cultivated genotypes and their relation with related species. Pl Syst Evol 290:85–97CrossRefGoogle Scholar
  17. del Castillo RF, Argueta ST (2009) Reproductive implications of combined and separate sexes in a trioecious population of Opuntia robusta (Cactaceae). Amer J Bot 96:1148–1158CrossRefPubMedGoogle Scholar
  18. Díaz EL, Cocucci AA (2003) Functional ginodioecy in Opuntia quimilo (Cactaceae), a tree cactus pollinated by bees and hummingbirds. Pl Biol 5:531–539CrossRefGoogle Scholar
  19. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  20. Gaiero P, Mazzella C, Agostini G, Bertolazzi S, Rossato M (2011) Genetic diversity among endangered Uruguayan populations of Butia Becc. species based on ISSR. Pl Syst Evol 292:105–116CrossRefGoogle Scholar
  21. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, CambridgeCrossRefGoogle Scholar
  22. Goloboff P (1998) Principios básicos de cladística. Sociedad Argentina de Botánica, ArgentinaGoogle Scholar
  23. Grant V, Grant KA (1971) Natural hybridization between the cholla cactus species Opuntia spinosior and Opuntia versicolor. Proc Natl Acad Sci USA 68:1993–1995CrossRefPubMedCentralPubMedGoogle Scholar
  24. Grant V, Grant KA (1979) Systematics of the Opuntia pheacantha group in Texas. Bot Gaz 140:199–207CrossRefGoogle Scholar
  25. Griffith MP (2001a) Experimental hybridization in northern Chihuahuan Desert region Opuntia. Aliso 20:37–42Google Scholar
  26. Griffith MP (2001b) A new Chihuahuan Desert prickly pear, Opuntia rooneyi. Cact Succ J 73:307–310Google Scholar
  27. Griffith MP (2004) The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Amer J Bot 91:1915–1921CrossRefPubMedGoogle Scholar
  28. Griffith MP, Porter JM (2009) Phylogeny of Opuntioideae (Cactaceae). Int J Pl Sci 170:107–116CrossRefGoogle Scholar
  29. Guiggi A (2010) Genera nova et combinations novae in cactaceis austroamericanis ad subfamiliam Opuntioideae K. Schumann spectantibus. Suppl Cactol 2:1–4Google Scholar
  30. Hall TA (1999) BioEdit: a friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Series 41:95–98Google Scholar
  31. Hamming RW (1950) Error detecting and error correcting codes. Bell Sys Tech J 29:147–160CrossRefGoogle Scholar
  32. Hernández-Hernández T, Hernández HM, De-Nova JA, Puente R, Eguiarte LE, Magallón S (2011) Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Amer J Bot 98:44–61CrossRefPubMedGoogle Scholar
  33. Hunt D, Taylor N, Charles G (2006) The New Cactus Lexicon. DH Books, Milborne PortGoogle Scholar
  34. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  35. Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Molec Biol Evol 23:1602–1612CrossRefPubMedGoogle Scholar
  36. Labra M, Grassi F, Bardini M, Imazio S, Guiggi A, Citterio S, Banfi E, Sgorbati S (2003) Relationships in Opuntia Mill. genus (Cactaceae) detected by molecular marker. Int J Pl Sci 165:1129–1136Google Scholar
  37. Lenzi M, Orth AI (2012) Mixed reproduction systems in Opuntia monacantha (Cactaceae) in Southern Brazil. Brazil J Bot 35:49–58CrossRefGoogle Scholar
  38. Leuenberger BE (2002) The South American Opuntia ser. Armatae (= O. ser. Elatae) (Cactaceae). Bot Jahrb Syst 123:413–439Google Scholar
  39. Long A (2012) Opuntia ventanensis (Cactaceae), a new species from the Province of Buenos Aires, Argentina. Haseltonia 18:79–84CrossRefGoogle Scholar
  40. Luna-Páez A, Valadez-Moctezuma E, Barrientos-Priego AF, Gallegos-Vázquez C (2007) Caracterización de Opuntia spp. mediante semilla con marcadores RAPD e ISSR y su posible uso para diferenciación. J Profess Assoc Cact Devel 9:43–59Google Scholar
  41. Majure LC, Puente R, Griffith MP, Judd WS, Soltis PS, Soltis DE (2012) Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. Amer J Bot 99:847–864CrossRefPubMedGoogle Scholar
  42. Mansyah E, Sobir Santosa E, Poerwanto R (2010) Assessment of inter simple sequence repeat (ISSR) technique in mangosteen (Garcinia mangostana L.) grown in different Sumatra region. J Hort Forest 2:127–134Google Scholar
  43. Mishra PK, Fox RTV, Culham A (2003) Inter-simple sequence repeat and aggressiveness analyses revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Ann Apl Biol 143:291–301Google Scholar
  44. Nattero J, Malerba R (2011) Biología de especies australes: Opuntia quimilo Schum. Kurtziana 36:79–87Google Scholar
  45. Nyffeler R (2002) Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Amer J Bot 89:312–326CrossRefPubMedGoogle Scholar
  46. Pinkava DJ (2002) On the evolution of continental North American Opuntioideae. Succ Pl Res 6:59–98Google Scholar
  47. Porter JM, Kinney M, Heil KD (2000) Relationships between Sclerocactus and Toumeya (Cactaceae) based on chloroplast trnL-trnF sequences. Haseltonia 7:8–19Google Scholar
  48. Rana TS, Narzary D, Ohri D (2012) Molecular differentiation of Chenopodium album complex and some related species using ISSR profiles and ITS sequences. Gene 495:29–35CrossRefPubMedGoogle Scholar
  49. Reyes-Agüero JA, Aguirre JR, Valiente-Banuet A (2006) Reproductive biology of Opuntia: a review. J Arid Envir 64:549–585CrossRefGoogle Scholar
  50. Ritz CM, Martins L, Mecklenburg R, Goremykin V, Hellwig FH (2007) The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. Amer J Bot 94:1321–1332CrossRefPubMedGoogle Scholar
  51. Ruas PM, Ruas CF, Rampim L, Carvalho VP, Ruas EA, Sera T (2003) Genetic relationship in Coffea species and parentage determination of interspecific hybrids using ISSR (Inter-Simple Sequence Repeat) markers. Genet Molec Biol 26:319–327CrossRefGoogle Scholar
  52. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evol 4:406–425PubMedGoogle Scholar
  53. Schlindwein C, Wittmann D (1997) Stamen movements in flowers of Opuntia (Cactaceae) favour oligolectic pollinators. Pl Syst Evol 204:179–193CrossRefGoogle Scholar
  54. Souto Alves T, Vanusa da Silva M, Alves de Almeida CM, Oliveira Jordão do Amaral D, Cordeiro dos Santos D, Farias I, Tenório Sabino Donato VM, Da Costa AF (2009) Genetic diversity in cactus clones using ISSR markers. In: VI International Congress on Cactus Pear and Cochineal, Acta Hort (ISHS), vol 811, pp 55–58Google Scholar
  55. Stegemann S, Keuthe M, Greiner S, Bock R (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci USA 109:2434–2438CrossRefPubMedCentralPubMedGoogle Scholar
  56. Taberlet P, Gieselly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109CrossRefGoogle Scholar
  57. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Molec Biol Evol 9:678–687PubMedGoogle Scholar
  58. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molec Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  59. Wallace RS, Dickie SL (2002) Systematic implication of chloroplast DNA sequence variation in subfamily Opuntioideae (Cactaceae). Succ Pl Res 6:9–24Google Scholar
  60. Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel PS (ed) Cacti, biology and uses. University of California Press, Los Angeles, pp 1–21Google Scholar
  61. Wang X-M (2011) Inter-simple sequence repeats (ISSR) molecular fingerprinting markers for authenticating the genuine species of rhubarb. J Med Pl Res 5:758–764Google Scholar
  62. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfy D, Sininsky J, White T (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322CrossRefGoogle Scholar
  63. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • María F. Realini
    • 1
    • 2
  • Graciela E. González
    • 1
    • 2
  • Fabián Font
    • 3
  • Pablo I. Picca
    • 4
  • Lidia Poggio
    • 1
    • 2
  • Alexandra M. Gottlieb
    • 1
    • 2
  1. 1.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Laboratorio de Citogenética y Evolución (LaCyE)Universidad de Buenos Aires, IEGEBA (UBA-CONICET)Buenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Museo de Farmacobotánica “Juan A. Domínguez”, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  4. 4.Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Laboratorio de Plantas VascularesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations