Plant Systematics and Evolution

, Volume 301, Issue 4, pp 1215–1226 | Cite as

Systematic implications of seed morphological diversity in Portulacaceae (Caryophyllales)

  • Gilberto OcampoEmail author
Original Article


The Portulacaceae are a monogeneric family with around 100 species distributed around the world. Seed morphology in the group is diverse, but its systematic significance is controversial, and its diversification patterns are unknown. In this study, the seed morphology and size of 63 samples representing 49 species, nine varieties, and two cultivars are evaluated under a phylogenetic framework. Eight seed features (including size) and DNA sequences were analyzed with parsimony and Bayesian methods and seed diversification patterns were estimated using ancestral character reconstruction under a parsimony approach. Analyses of the seed features retrieved an unresolved phylogeny, contrary to the phylogenetic estimate of the DNA data that was consistent with the clades and subclades obtained in previous studies. The analyses of a combined data matrix of seed features and DNA sequence data did not improve nodal support for the relationships within Portulacaceae. Although the hypothesis testing procedures could not reject the monophyly of major clades within Portulacaceae, ancestral character reconstruction analyses showed that the seed features are homoplasious and do not represent synapomorphies for those clades. Some character states were predominantly present in one clade and were rarely found in others. Seed size seemed to be relatively constant throughout the evolutionary history of Portulacaceae (<0.85 mm long), with multiple independent events of size increase. Although seed features do not reflect the evolutionary history of Portulacaceae, they still have a high taxonomic value, especially when used along with other features.


Character evolution Portulaca Portulacaceae Seed morphology Systematics 



I am grateful to James André, Hari Chhetri, J. Travis Columbus, Jennifer Cruse-Sanders, Patricia Jaramillo, James Matthews, Alfredo Reyes-Betancort, and Megan Thomas for providing samples for this study; Priscila Burgoyne at the Pretoria National Herbarium, Héctor Osorio at the Museo Nacional de Historia Natural (Uruguay), Bryan Simon at the Queensland Herbarium, Fernando Zuloaga at the Instituto de Botánica Darwinion, the Missouri Botanical Garden, and the University of Arizona Herbarium for access to herbarium collections; James André, J. Travis Columbus, Stephen Dreher, Amanda Ingram, Tasha LaDoux, Oscar Morales, Sarah Siedschlag, and Valerie Sosa for their companionship and assistance during fieldwork. This study was supported by Rancho Santa Ana Botanic Garden, the Cactus and Succulent Society of America, Claremont Graduate University, the Claremont University Club, and The Community Foundation serving the Riverside and San Bernardino Counties. Financial support to the author was provided by Rancho Santa Ana Botanic Garden, The Fletcher Jones Foundation, Comisión Nacional de Ciencia y Tecnología (Mexico), Fundación Prywer (Mexico), and the Instituto de Ecología, A.C. (Mexico).


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Barker FK, Lutzoni FM (2002) The utility of the incongruence length difference test. Syst Biol 51:625–637CrossRefPubMedGoogle Scholar
  3. Barthlott W (1981) Epidermal seed surface characters of plants: systematic applicability and some evolutionary aspects. Nord J Bot 1:345–355. doi: 10.1111/j.1756-1051.1981.tb00704.x CrossRefGoogle Scholar
  4. Barthlott W, Hunt D (2000) Seed diversity in the Cactaceae, subfamily Cactoideae (Succulent Plant Research vol. 5). David Hunt, SherborneGoogle Scholar
  5. Danin A, Anderson LC (1986) Distribution of Portulaca oleracea L. (Portulacaceae) subspecies in Florida. Sida 11:318–324Google Scholar
  6. Danin A, Raus T (2012) A key to 19 microspecies of the Portulaca oleracea aggregate. In: Timonin AK (ed) Caryophyllales: new insights into phylogeny, systematics, and morphological evolution of the order, proceedings of the symposium held on 24th–27th September 2012. Lomonosov State University, Moscow, pp 70–83Google Scholar
  7. Danin A, Reyes-Betancort JA (2006) The status of Portulaca oleracea L. in Tenerife, the Canary Islands. Lagascalia 26:71–81Google Scholar
  8. Danin A, Baker I, Baker HG (1978) Cytogeography and taxonomy of the Portulaca oleracea L. polyploid complex. Israel J Bot 27:177–211Google Scholar
  9. Danin A, Domina G, Raimondo FM (2008) Microspecies of the Portulaca oleracea aggregate found on major Mediterranean islands (Sicily, Cyprus, Crete, Rhodes). Fl Medit 18:89–107Google Scholar
  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedCentralPubMedGoogle Scholar
  11. El-Bakatoushi R, Alframawy AM, Samer M, El-Sadek L, Botros W (2013) Evolution of the Portulaca oleracea L. aggregate in Egypt on molecular and phenotypic levels revealed by morphology, inter-simple sequence repeat (ISSR) and 18S rDNA gene sequence markers. Flora 208:464–477. doi: 10.1016/j.flora.2013.07.008 CrossRefGoogle Scholar
  12. Engelmann G (1850) Portulacaceae. Boston J Nat Hist 6:153–155Google Scholar
  13. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  15. Geesink R (1969) An account of the genus Portulaca in Indo-Australia and the Pacific. Blumea 17:275–301Google Scholar
  16. Gilbert MG, Phillips SM (2000) A review of the opposite-leaved species of Portulaca in Africa and Arabia. Kew Bull 55:769–802. doi: 10.2307/4113627 CrossRefGoogle Scholar
  17. Henrickson J (1981) A new species of Portulacaceae from the Chihuahuan Desert. Madroño 28:78–79Google Scholar
  18. Legrand D (1953) Desmembración del género Portulaca. Comun Bot Mus Hist Nat Montevideo 31:1–14Google Scholar
  19. Legrand D (1958) Desmembración del género Portulaca II. Comun Bot Mus Hist Nat Montevideo 3:1–17Google Scholar
  20. Legrand D (1962) Las especies americanas de Portulaca. Ann Mus Hist Nat Montevideo 7:1–147Google Scholar
  21. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925CrossRefPubMedGoogle Scholar
  22. Li S, Pearl DK, Doss H (2000) Phylogenetic tree construction using Markov chain Monte Carlo. J Amer Stat Assoc 95:493–508CrossRefGoogle Scholar
  23. Macbride JF (1937) Portulacaceae. Publ Field Mus Nat Hist Bot Ser 13:562–573Google Scholar
  24. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, version 2.75. Published by the authors. Accessed 3 March 2014
  25. Matthews JF, Levins PA (1985a) Portulaca pilosa L., P. mundula I.M. Johnst. and P. parvula gray in the southwest. Sida 11:45–61Google Scholar
  26. Matthews JF, Levins PA (1985b) The genus Portulaca in the southeastern United States. Castanea 50:96–104Google Scholar
  27. Matthews JF, Levins PA (1986) The systematic significance of seed morphology in Portulaca (Portulacaceae) under scanning electron microscopy. Syst Bot 11:302–308CrossRefGoogle Scholar
  28. Matthews JF, Ketron DW, Zane SF (1992) Portulaca umbraticola Kunth (Portulacaceae) in the United States. Castanea 57:202–208Google Scholar
  29. Matthews JF, Ketron DW, Zane SF (1993) The biology and taxonomy of the Portulaca oleracea L. (Portulacaceae) complex in North America. Rhodora 95:166–183Google Scholar
  30. Mueller F (1859) Portulacaceae. In: Mueller F (ed) Fragm. (Mueller) I. Victorian Government, Melbourne, pp 169–177Google Scholar
  31. Müller KF (2005) The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. BMC Evol Biol 5:58. doi: 10.1186/1471-2148-5-58 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Nyananyo BL (1988) The systematic significance of seed morphology and anatomy in the Portulacaceae (Centrospermae). Folia Geobot Phytotaxon 23:275–279Google Scholar
  33. Nyffeler R, Eggli U (2010) Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59:227–240Google Scholar
  34. Nylander JAA (2004) MrModeltest, version 2. Published by the author. Accessed 30 February 2014
  35. Ocampo G (2013) Morphological characterization of seeds in Portulacaceae. Phytotaxa 14:1–24. doi: 10.11646/phytotaxa.141.1.1 CrossRefGoogle Scholar
  36. Ocampo G, Columbus JT (2012) Molecular phylogenetics, historical biogeography, and chromosome number evolution in Portulaca (Portulacaceae). Molec Phylogen Evol 63:97–112. doi: 10.1016/j.ympev.2011.12.017 CrossRefGoogle Scholar
  37. Ocampo G, Koteyeva NK, Voznesenskaya EV, Edwards GE, Sage TL, Sage RF, Columbus JT (2013) Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae. Amer J Bot 100:2388–2402. doi: 10.3732/ajb.1300094 CrossRefGoogle Scholar
  38. Phillips SM (2000) Notes on Portulaca L. (Portulacaceae) in Tropical East Africa. Kew Bull 55:687–698. doi: 10.2307/4118786 CrossRefGoogle Scholar
  39. Phillips SM (2002) Portulacaceae. In: Beentje HJ (ed) Flora of Tropical East Africa. AA Balkema, Rotterdam, pp 1–40Google Scholar
  40. Poellnitz K (1934) Versuch eine Monographie der Gattung Portulaca L. Feddes Repert Spec Nov Regni Veg 37:240–320. doi: 10.1002/fedr.19340371403 Google Scholar
  41. Prabhakar M, Leelavathi P, Kumar BKV (1990) SEM studies on seeds of Indian Portulacaceae and their taxonomic significance. Asian J Pl Sci 2:9–14Google Scholar
  42. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Molec Evol 43:304–311CrossRefPubMedGoogle Scholar
  43. Reeves JH (1992) Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. J Molec Evol 35:17–31CrossRefPubMedGoogle Scholar
  44. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedCentralPubMedGoogle Scholar
  45. Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer, SunderlandGoogle Scholar
  46. Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86Google Scholar
  47. Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–244CrossRefGoogle Scholar
  48. Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G (2010) Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae). J Exp Bot 61:3647–3662. doi: 10.1093/jxb/erq178 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molec Biol Evol 10:1396–1401PubMedGoogle Scholar
  50. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Molec Biol Evol 14:717–724CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Rancho Santa Ana Botanic Garden and Claremont Graduate UniversityClaremontUSA
  2. 2.Department of Botany, Institute for Biodiversity Science and SustainabilityCalifornia Academy of SciencesSan FranciscoUSA

Personalised recommendations