Advertisement

Plant Systematics and Evolution

, Volume 301, Issue 3, pp 883–892 | Cite as

Natural hybridization among subspecies of Turnera sidoides L. (Passifloraceae) revealed by morphological and genetic evidence

  • E. M. Sara Moreno
  • Pablo R. Speranza
  • Juan M. Roggero Luque
  • Viviana G. Solís Neffa
Original Article

Abstract

Turnera sidoides is a complex of outcrossing, perennial, rhizomatous herbs that is widely distributed in southern South America. Five subspecies are recognized taxonomically based on morphological features and geographical distribution. In certain regions, the areas of distribution of the subspecies overlap partially. In such contact zones, the extent of reproductive barriers among subspecies is still largely unknown, but morphologically intermediate individuals have been found in the field, indicating that hybridization may actually occur between subspecies. Crossability among subspecies of T. sidoides has been shown by experimental studies with cultivated plants, but the mechanisms involved in natural populations are still unknown. To investigate the mechanisms that underlie gene flow within the T. sidoides complex, in this paper we analyze the morphological and genetic variation, as well as the crossability among taxa in a contact zone between subspecies pinnatifida and sidoides, in southeastern Uruguay. Our results constitute the first evidences of ongoing natural hybridization between subspecies of T. sidoides and suggest that, although hybridization may not have been of significance in the early phase of the species differentiation, reticulate evolution is ongoing enhancing the current morphological and genetic variability of the complex.

Keywords

Turnera sidoides Hybridization Gene flow RAPD 

Notes

Acknowledgments

This research was partially supported by grants of Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT- FONCyT, PICT 14674 and 01-1329; PICTO 07-90), National Research Council of Argentina (CONICET, PIP 5998) and Secretaría General de Ciencia y Técnica (UNNE, PI-013/04 and PI-014/07). E.M.S. Moreno and J.M. Roggero Luque are Doctoral Fellows of CONICET, and V.G. Solís Neffa is a member of the Carrera del Investigador Científico of CONICET.

Supplementary material

606_2014_1122_MOESM1_ESM.doc (143 kb)
Supplementary material 1 (DOC 143 kb)

References

  1. Arbo MM (1985) Notas taxonómicas sobre Turneráceas Sudamericanas. Candollea 40:175–191Google Scholar
  2. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, OxfordGoogle Scholar
  3. Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer, SunderlandGoogle Scholar
  4. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annual Rev Ecol Syst 16:113–148CrossRefGoogle Scholar
  5. Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Stain Technol 31:87–90PubMedGoogle Scholar
  6. Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22CrossRefGoogle Scholar
  7. Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1:233–240CrossRefGoogle Scholar
  8. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  9. Elías G (2010) Dinámica de una zona de contacto diploide-tetraploide de Turnera sidoides subsp. pinnatifida (Turneraceae). Doctoral Thesis, Universidad Nacional de Tucumán (Argentina)Google Scholar
  10. Elías G, Sartor M, Solís Neffa VG (2011) Patterns of cytotype variation of Turnera sidoides subsp. pinnatifida (Turneraceae) in mountain ranges of central Argentina. J Pl Res 124:25–34CrossRefGoogle Scholar
  11. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–494PubMedCentralPubMedGoogle Scholar
  12. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  13. Felber F, Bever JD (1997) Effect of triploid fitness on the coexistence of diploids and tetraploids. Biol J Linn Soc 60:95–106CrossRefGoogle Scholar
  14. Fernández A (1973) El ácido láctico como fijador cromosómico. Bol Soc Argent Bot 15:287–290Google Scholar
  15. Fernández A (1987) Estudios cromosómicos en Turnera y Piriqueta (Turneraceae). Bonplandia 6:1–21Google Scholar
  16. Fernández A, Arbo MM (1989) Relaciones genómicas entre cuatro especies diploides de Turnera con flores amarillas (Serie Canaligerae). Bonplandia 6:93–109Google Scholar
  17. Fernández A, Solís Neffa VG (2004) Genomic relationships between Turnera krapovickasii (2x, 4x) and T. ulmifolia (6x) (Turneraceae, Turnera). Caryologia 57:45–51CrossRefGoogle Scholar
  18. Fernández A, Rey H, Solís Neffa VG (2010) Evolutionary relationships between the diploid Turnera grandiflora and the octoploid T. fernandezii (Series Turnera, Turneraceae). Ann Bot Fenn 47:321–329CrossRefGoogle Scholar
  19. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  20. Grant BR, Grant PR (1996) High survival of Darwin’s finch hybrids: effects of beak morphology and diets. Ecology 77:500–509CrossRefGoogle Scholar
  21. Harrison RG (1990) Hybrids zones: windows on evolutionary process. Oxford Surv Evol Biol 7:69–128Google Scholar
  22. InfoStat (2012) InfoStat, versión 2012. Manual del Usuario. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Primera Edición, Editorial Brujas ArgentinaGoogle Scholar
  23. Kovalski IE (2013) Origen y establecimiento de poliploides en poblaciones naturales de Turnera sidoides. Doctoral Thesis, Universidad Nacional de Córdoba (Argentina)Google Scholar
  24. Kovalski IE, Roggero Luque JM, Solís Neffa VG (2011) Estudios citogenéticos en triploides del complejo Turnera sidoides. BAG XL (Suplemento): 124Google Scholar
  25. Kovalsky IE, Solís Neffa VG (2012) Evidence of 2n microspore production in a natural diploid population of Turnera sidoides subsp. carnea and its relevance in the evolution of the T. sidoides (Turneraceae) autopolyploid complex. J Pl Res 125:725–734CrossRefGoogle Scholar
  26. Levin DA (1975) Minority cytotype exclusion in local plants populations. Taxon 24:35–43CrossRefGoogle Scholar
  27. Lynch M, Milligan BG (1994) Analysis of population structure with RAPD markers. Mol Ecol 3:91–99CrossRefPubMedGoogle Scholar
  28. McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202CrossRefPubMedGoogle Scholar
  29. Nason JD, Ellstrand NC, Arnold ML (1992) Patterns of hybridization and introgression in populations of oaks, manzanitas, and irises. Amer J Bot 79:101–111CrossRefGoogle Scholar
  30. Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568CrossRefGoogle Scholar
  31. Panseri AF, Seijo JG, Solís Neffa VG (2008) Análisis de la producción y frecuencia de microsporas no reducidas en diploides de Turnera sidoides (Turneraceae). Bol Soc Argent Bot 43:95–101Google Scholar
  32. Peakall R, Smouse PE (2006) GENALEX 6: genetic Analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  34. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  35. Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389CrossRefGoogle Scholar
  36. Rieseberg LH, Carney SH (1998) Plant hybridization. New Phytol 140:599–624CrossRefGoogle Scholar
  37. Rieseberg LH, Ellstrand NC (1993) What can morphological and molecular markers tell us about plant hybridization? Crit Rev Pl Sci 12:213–241Google Scholar
  38. Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 71–109Google Scholar
  39. Rieseberg LH, Baird SJE, Gardner KA (2000) Hybridization, introgression, and linkage evolution. Pl Mol Biol 42:205–224CrossRefGoogle Scholar
  40. Savidan Y, Pernès J (1981) Diploid-tetraploid-dihaploid cycles in the evolution of Panicum maximum Jacq. Evolution 36:596–600CrossRefGoogle Scholar
  41. Shaw J, Lickey EB, Beck JT, Farmer SS, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2004) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analyses. Amer J Bot 92:142–166CrossRefGoogle Scholar
  42. Shore JS, Barrett SCH (1985) Morphological differentiation and crossability among populations of the Turnera ulmifolia L. complex (Turneraceae). Syst Bot 10:308–321CrossRefGoogle Scholar
  43. Solís Neffa VG (2000) Estudios biosistemáticos en el complejo Turnera sidoides L. (Turneraceae, Leiocarpae). Doctoral Thesis, Universidad Nacional de Córdoba (Argentina)Google Scholar
  44. Solís Neffa VG (2010) Geographic patterns of morphological variation in Turnera sidoides L. subsp. pinnatifida (Turneraceae). Pl Syst Evol 284:219–229CrossRefGoogle Scholar
  45. Solís Neffa VG, Fernández A (2001) Cytogeography of the Turnera sidoides L. complex (Turneraceae, Leiocarpae). Bot J Linn Soc 137:189–196CrossRefGoogle Scholar
  46. Solís Neffa VG, Panseri AF, Reynoso W, Seijo JG (2004) Variación del color de flores y números cromosómicos en el noroeste del área de distribución de Turnera sidoides (Turneraceae). Bonplandia 13:117–128Google Scholar
  47. Solís Neffa VG, Panseri AF, Kovalsky IE, Fernández A (2008) Estudios citogenéticos en híbridos artificiales del complejo Turnera sidoides. BAG XIX (Suplemento): 195–196Google Scholar
  48. Speranza PR, Seijo JG, Grela IA, Solís Neffa VG (2007) cpDNA variation in the Turnera sidoides L. complex (Turneraceae): biogeographical implications. J Biogeogr 34:427–436CrossRefGoogle Scholar
  49. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  50. Stebbins GL (1959) The role of hybridization in evolution. Proc Amer Philos Soc 103:231–251Google Scholar
  51. Stebbins GL (1971) Chromosomal evolution in higher plants. E. Arnold, LondonGoogle Scholar
  52. Stift M, Bregman R, Gerard J, Oostermeijer B, van Tienderen PH (2010) Other tetraploid species and conspecific diploids as sources of genetic variation for an autotetraploid. Amer J Bot 97:1858–1866CrossRefGoogle Scholar
  53. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Mol Biol 17:1105–1109CrossRefGoogle Scholar
  54. Zohary D, Nur U (1959) Natural triploids in the orchard grass, Dactylis glomerata L., polyploid complex and their significance for gene flow from diploid to tetraploid levels. Evolution 13:311–317CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • E. M. Sara Moreno
    • 1
    • 2
  • Pablo R. Speranza
    • 3
  • Juan M. Roggero Luque
    • 1
    • 2
  • Viviana G. Solís Neffa
    • 1
    • 2
  1. 1.Instituto de Botánica del Nordeste, UNNE, Facultad de Ciencias Agrarias-CONICETCorrientesArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNECorrientesArgentina
  3. 3.Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations