Advertisement

Plant Systematics and Evolution

, Volume 301, Issue 1, pp 387–410 | Cite as

Phylogenetic relationships within Tillandsia subgenus Diaphoranthema (Bromeliaceae, Tillandsioideae) based on a comprehensive morphological dataset

  • Sabina Donadío
  • Raúl Pozner
  • Liliana M. Giussani
Original Article

Abstract

Tillandsia subgenus Diaphoranthema (Tillandsioideae, Bromeliaceae) includes 29 epiphytic species distributed widely from southern North America to central Argentina and Chile. The species of Diaphoranthema are characterized by few small flowers, and most species are differentiated by phyllotaxy, leaf shape, flower number, and by the morphology and number of bracts. In addition to the highly variable vegetative characters, most species of subgenus Diaphoranthema possesses polyembryonic seeds (rare in Bromeliaceae) and an autogamous breeding system with a few number of species having cleistogamous flowers. In order to clarify relationships within Diaphoranthema and to understand the evolution of polyembryony, the breeding system, and diagnostic characters, a cladistic analysis of all known species using 85 morphological characters was conducted. Phylogenetic results suggest that Diaphoranthema is monophyletic if some species from the closely related subgenus Phytarrhiza are included. These two subgenera can only be distinguished from each other by the shape and size of their petals. A complete sampling of Phytarrhiza is still needed to test these hypotheses. None of the six informal groups as previously recognized are monophyletic. Vegetative characters such as phyllotaxy and the shape, length, and width of leaves were the most useful for distinguishing four major clades within Diaphoranthema. Flower number, scape development, exocarp and endocarp fusion at fruit ripening, and absence of endosperm in mature seeds were also used to distinguish some clades. Evolutionary trends favour a distichous phyllotaxy, linear shape leaf blades, and a reduction in flower number and bracts per inflorescence. In addition, capsules with disaggregating exocarp and endocarp at ripening, and polyembryonic seeds are also derived states within subgenus Diaphoranthema.

Keywords

Phylogeny Tillandsia Diaphoranthema Morphology 

Notes

Acknowledgments

This study was presented at the Universidad de Buenos Aires as part of the PhD thesis of S. Donadío and supported by CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina) Doctoral fellowships. Field collections were supported by the Myndel Botanica Foundation. We thank BHCB, CORD, CTES, LIL, LPB, MCNS, SI, SGO, and WU for providing plant material. We are grateful to Dr. Till who kindly helped us throughout, providing information and type materials used in this study, Dr. Julian Starr for valuable comments on an early version of the manuscript, and Dr. Lynn Gillespie for the review of a revised version of the manuscript. We acknowledge two anonymous reviewers who contributed to improving this manuscript. Finally, we thank the staff of Darwinion Institute for providing technical and administrative support, Dieter Hollweck for german translations, and Roberto Donadío for assembling the list of materials.

References

  1. Aguilar-Rodríguez S, Terrazas T, Aguirre-León E, Huidobro-Salas ME (2007) Modificaciones en la corteza de Prosopis laevigata por el establecimiento de Tillandsia recurvata. Bol Soc Bot 81:27–35Google Scholar
  2. Almeida VR, Ferreira da Costa A, Mantovani A, Gonçalves-Esteves V, Arruda RCO, Forzza RC (2009) Morphological phylogenetics of Quesnelia (Bromeliaceae, Bromelioideae). Syst Bot 34(4):660–672CrossRefGoogle Scholar
  3. Baker JG (1878) A synopsis of the species of Diaphoranthema. J Bot 16:236–241Google Scholar
  4. Barboza GE, Cantero JJ, Nuñez C, Ariza Espinar L (2006) Flora medicinal de la provincia de Córdoba (Argentina): pteridófitas y antófitas silvestres o naturalizadas. Museo Botánico, CórdobaGoogle Scholar
  5. Barfuss MHJ, Samuel MR, Till W, Stuessy TF (2005) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am J Bot 92(2):337–351PubMedCrossRefGoogle Scholar
  6. Barfuss MHJ, Samuel MR, Till W (2013) Systematics and evolution of Tillandsieae (Bromeliaceae). Monocots V: 5th International Conference on Comparative Biology of Monocotyledons, New York, USA. https://www.regonline.com/custImages/320000/329272/July8NYBGMonocotsVAbstractBook.pdf
  7. Bártoli CG, Beltrano J, Fernández LV, Caldiz DO (1993) Control of the epiphytic weeds Tillandsia recurvata and T. aeränthos with different herbicides. For Ecol Manage 59:289–294CrossRefGoogle Scholar
  8. Beer JG (1854) Versuch einer einthelung der familie der Bromeliaceen nach ihrem Blüthenstande. Flora 37:346–349Google Scholar
  9. Beer JG (1857) Die Familie der Bromeliaceen nach ihrem habituellen character bearbeitet, mit besonderer Berücksichtigung der Ananassa. Wien, Tendler & Comp, ViennaGoogle Scholar
  10. Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Benzing DH, Seemann J (1978) Nutritional piracy and host decline: a new perspective on the epiphyte-host relationship. Selbyana 2(2–3):133–148Google Scholar
  12. Billings FH (1904) A study of Tillandsia usneoides. Bot Gaz 38:99–121CrossRefGoogle Scholar
  13. Birge WI (1911) The anatomy and some biological aspects of the “Ball Moss”, Tillandsia recurvata L. Bull Univ Texas 20:1–23Google Scholar
  14. Böhme S (1988) Bromelienstudien III. Vergleichende Untersuchungen zu Bau, Lage und sytematischer Verwertbarkeit der Septalnektarien von Bromeliaceen. Trop Subtrop Pflanzenw 62:86–89Google Scholar
  15. Brown GK, Gilmartin AJ (1984) Stigma structure and variation in Bromeliaceae—neglected taxonomic characters. Brittonia 36:364–374CrossRefGoogle Scholar
  16. Brown GK, Gilmartin AJ (1989) Stigma types in Bromeliaceae. A systematic survey. Syst Bot 14:110–132CrossRefGoogle Scholar
  17. Caldiz DO, Beltrano J, Fernandez LV, Andia I (1993) Survey of Tillandsia recurvata L.: preference, abundance and its significance for natural forests. For Ecol Manage 57(1–4):161–168CrossRefGoogle Scholar
  18. Caldiz DO, Fernandez LV (1995) The role of the epiphytic weeds Tillandsia recurvata and T. aëranthos in native rural and urban forest. Int J Ecol Environ Sci 21:177–197Google Scholar
  19. Castellanos A (1945) Bromeliaceae, in H. R. Descole (ed.), Genera et species plantarum argentinarum 3: 105–378. Guillermo Kraft Ltda., Buenos AiresGoogle Scholar
  20. Cecchi Fiordi A, Palandri MR, Di Falco P, Tani G (1996) Cytological aspects of the hypocotyl correlated to the behavior of the embryo radicle of Tillandsia atmospheric species. Caryologia 49(2):113–124CrossRefGoogle Scholar
  21. Culley TM, Klooster MR (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Bot Rev 73(1):1–30CrossRefGoogle Scholar
  22. Donadío S (2011) A valid name for the taxa known as Tillandsia bryoides auct. (Bromeliaceae). Darwiniana 49(2):131–138Google Scholar
  23. Donadío S (2013) Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía. PhD. Dissertation, Universidad de Buenos Aires, Buenos Aires, ArgentinaGoogle Scholar
  24. Endress PK (2010) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J Sys Evol 48(4):225–239CrossRefGoogle Scholar
  25. Garth RR (1964) The ecology of Spanish moss (Tillandsia usneoides): its growth and distribution. Ecology 45:470–481CrossRefGoogle Scholar
  26. Gilmartin AJ, Brown GK (1985) Cleistogamy in Tillandsia capillaris (Bromeliaceae). Biotropica 17(3):256–259CrossRefGoogle Scholar
  27. Gilmartin AJ, Brown GK (1986) Cladistic tests of hypotheses concerning evolution of xerophytes and mesophytes within Tillandsia subgenus Phytarrhiza (Bromeliaceae). Amer J Bot 73:387–397CrossRefGoogle Scholar
  28. Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Amer J Bot 98(5):872–895CrossRefGoogle Scholar
  29. Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenet Evol 71:55–78PubMedCrossRefGoogle Scholar
  30. Goloboff PA, Farris JS, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  31. Gortan G (1991) Narbenformen bei Bromeliaceen: Variationsmöglichkeiten und Überlegungen zu systematisch-taxonimischen Korrelationen. Dissertation M.Sc. thesis, Universität Wien, Vienna, AustriaGoogle Scholar
  32. Gouda EJ (1986) Tillandsia spiralipetala, a new small species from Bolivia. J Brom Soc 36(4):165–166Google Scholar
  33. Gouda EJ (1988) Tillandsia copynii, a new miniature from Brazil. J Brom Soc 38(2):81–84Google Scholar
  34. Graciano C, Fernandez LV, Caldiz DO (2003) Tillandsia recurvata L. as a bioindicator of sulfur atmospheric pollution. Ecol Austral 13(1):3–14Google Scholar
  35. Gross E (1985) Polyembryony in bromeliads: a provisional note. J Brom Soc 35(5):202–205Google Scholar
  36. Gross E (1988) Bromelienstudien IV. Zur Morphologie der Bromeliaceen-Samen unter Berücksichtung systematisch-taxonomischer Aspekte. Trop Sutrop Pflanzenw 64:1–215Google Scholar
  37. Halbritter H (1992) Morphologie und systematische Bedeutung des Polens der Bromeliaceae. Grana 31:197–212CrossRefGoogle Scholar
  38. Hornung-Leoni CT, Sosa V (2008) Morphological phylogenetics of Puya subgenus Puya (Bromeliaceae). Bot J Linn Soc 156:93–110CrossRefGoogle Scholar
  39. Horres R, Zizka G, Kahl G, Weising K (2000) Molecular phylogenetics of Bromeliaceae: evidence from trnL (UAA) intron sequences of the chloroplast genome. Plant Biol 2:306–315CrossRefGoogle Scholar
  40. Hromadnik L, Schneider P (1988) Eine neue Tillandsia aus Argentinien. Haussknechtia 4:39–41Google Scholar
  41. Hromadnik L, Till W (1991) Tillandsia tenebra, spec. nov.: eine neue Kleintillandsia aus der Untergattung Diaphoranthema. Die Bromelie 2/91:32–34Google Scholar
  42. Jones CE, Little RJ (1983) Handbook of experimental pollination biology. Scientific and Academic Editions, New YorkGoogle Scholar
  43. Kromer T, Kessler M, Herzog SK (2006) Distribution and flowering ecology of bromeliads along two climatically contrasting elevational transects in the Bolivian Andes. Biotropica 38(2):183–195CrossRefGoogle Scholar
  44. Lindley J (1848) Book III—Glossology. In: Longman, Brown, Green, and Longmans, Paternoster row (eds.) An Introduction to Botany, 4th edn. Vol.II. Bradbury and Evans, London, pp 344–384Google Scholar
  45. Magalhães RI, Mariath JEA (2012) Seed morphoanatomy and its systematic relevance to Tillandsioideae (Bromeliaceae). Plant Syst Evol 298:1881–1895CrossRefGoogle Scholar
  46. Mc Williams EL (1974) Evolutionary ecology. In: Smith LB, Downs RJ (eds.) Pitcairnioideae (Bromeliaceae), Flora Neotropica Monograph 14(1), Hafner, New York, pp 40–55 Google Scholar
  47. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New YorkGoogle Scholar
  48. Schinini A, Wanderley MGL, Strehl T, Martins Z, Moreira B (2008) Bromeliaceae, In: Zuloaga FO, Morrone O, Belgrano MJ (eds) Catálogo de las Plantas Vasculares del Cono sur (Argentina, sur de Brasil, chile, Paraguay y Uruguay), Monographs in Systematic Botany from the Missouri Botanical Garden 107:245–291Google Scholar
  49. Smith LB, Downs RJ (1977) Tillandsioideae (Bromeliaceae). In: Smith LB, Downs RJ (eds.) Flora Neotropica Monograph 14(2), Hafner Press, New York, pp 663-1492Google Scholar
  50. Smith LB, Till W (1998) Bromeliaceae. In: Kubitzki K et al (eds) The families and genera of vascular plants, flowering plants, Monocotyledons: Alismatanae and Commelinanae (except Gramineae), vol IV. Springer, Berlin, pp 74–99CrossRefGoogle Scholar
  51. Subils R (1973) Poliembrionía en especies argentinas de Tillandsia (Bromeliaceae). Kurtziana 7:266–267Google Scholar
  52. Subils R (2009) Bromeliaceae. In: Kiesling RB (ed) Flora de San Juan, vol 4. Universidad Nacional de San Juan, Mendoza, pp 340–363Google Scholar
  53. Suessenguth K (1921) Beiträge zur Frage des systematischen Anschlusses der Monocotylen. Beih Bot Centralbl 38:1–79Google Scholar
  54. Terry RG, Brown GK, Olmstead RG (1997) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) using ndhF sequences. Syst Bot 22(2):333–345CrossRefGoogle Scholar
  55. Thiers B (2013) (permanent actualization) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih. Accessed 2013
  56. Till W (1984) Sippendifferenzierung innerhalb Tillandsia subgenus Diaphoranthema in Südamerika mit besonderer Berücksichtigung des Andenostrandes und der angrenzenden Gebiete. PhD. Dissertation, Universität Wien, Vienna, AustriaGoogle Scholar
  57. Till W (1989a) Die Untergattung Diaphoranthema (Beer) C. Koch von Tillandsia Linnaeus. 1, Das Tillandsia capillaris Aggregat. Die Bromelie 2/89:31–34Google Scholar
  58. Till W (1989b) Die Untergattung Diaphoranthema (Beer) C. Koch von Tillandsia Linnaeus. 2, Das Tillandsia loliacea Aggregat. Die Bromelie 3/89:55–59Google Scholar
  59. Till W (1991a) Die Untergattung Diaphoranthema von Tillandsia Linnaeus. 3, Teil: Das Tillandsia rectangula Aggregat. Die Bromelie 1/91:15–19Google Scholar
  60. Till W (1991b) Eine neue Unterart von Tillandsia landbeckii Philippi. Die Bromelie 3/91:71–73Google Scholar
  61. Till W (1992a) Die Untergattung Diaphoranthema von Tillandsia. 4, Teil: Das Tillandsia recurvata Aggregat. Die Bromelie 1/92:15–20Google Scholar
  62. Till W (1992b) Systematics and evolution of the tropical-subtropical Tillandsia subgenus Diaphoranthema (Bromeliaceae). Selbyana 13:88–94Google Scholar
  63. Till W (1995) Eine neue Tillandsia aus den zentralbolivianischen Hochanden. Die Bromelie 2(95):33–35Google Scholar
  64. Till W, Hromadnik H (1983) Tillandsia mollis (Bromeliaceae): eine neue Art aus Sudbolivien. Pl Syst Evol 142(1–2):123–128CrossRefGoogle Scholar
  65. Till W, Hromadnik L (1984) Neue taxa von Tillandsia subgenus Diaphoranthema (Bromeliaceae) aus Bolivien und Argentinien. Pl Syst Evol 147(3–4):279–288CrossRefGoogle Scholar
  66. Wannaz ED, Carreras HA, Pérez CA, Pignata ML (2006) Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Sci Total Environ 361:267–278PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Sabina Donadío
    • 1
  • Raúl Pozner
    • 1
  • Liliana M. Giussani
    • 1
  1. 1.Instituto de Botánica DarwinionSan IsidroArgentina

Personalised recommendations