Plant Systematics and Evolution

, Volume 301, Issue 1, pp 15–23 | Cite as

Genetic analysis of the dry forest timber tree Sideroxylon capiri in Costa Rica using AFLP

  • Heidy M. Villalobos-BarrantesEmail author
  • Elmer G. García
  • Andrew J. Lowe
  • Federico J. Albertazzi
Original Article


Sideroxylon capiri (“Tempisque”) is a threatened and economically important timber species in the dry forest of Costa Rica. To assess the extent of the genetic diversity between and within populations of this species, 86 samples were obtained from four sites in the northwestern part of the country from protected and non-protected areas. They were analyzed by amplified fragment length polymorphism. Five primers were used to generate 254 polymorphic bands. Molecular variance indicated a 92 % within locations with a PhiPT (φ st) of 0.083 and a He from 0.204 to 0.249. PCoA analysis showed two different groups: one formed by Palo Verde and La Cruz samples, and another group with Nicoya and Barra Honda samples. The dendrogram arranged the samples in three groups: individuals from Palo Verde and La Cruz divided in two groups, and a more compact group from Barra Honda and Nicoya. A positive correlation between pairwise linearized geographical distance and genetic differentiation among populations was detected by Mantel test (R 2 = 0.76241, P = 0.04). Results are discussed in terms of fragmentation of the continuous forests and geographical barriers. Despite these results, it is evident that a great genetic diversity exists for this species and the results can be used for conservation purposes.


AFLP Genetic diversity Tropical dry forest Tempisque Sapotaceae 



The authors thank the Vicerrectoría de Investigación de la Universidad de Costa Rica, Consejo Nacional de Ciencia y Tecnología de Costa Rica, Sistema Nacional de Áreas de Conservación (SINAC), Ministerio de Ambiente y Energía (MINAE), University of Queensland, University of Adelaide, Dr. Peter Prentis, Dr. Micheal Gardner, Dr. Giselle Tamayo, Dr. Rosaura Romero and Dr. James Karkashian.


  1. Andrade IM, Mayo SJ, Van Den Berg C et al (2007) A preliminary study of genetic variation in populations of Monstera adansonii var. klotzschiana (Araceae) from North–East Brazil, estimated with AFLP molecular markers. Ann Bot 100:1143–1154PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bawa KS (2006) Globally dispersed local challenges in conservation biology. Conserv Biol 20:696–699PubMedCrossRefGoogle Scholar
  3. Bawa KS, Bullock SH, Perry DR et al (1985a) Reproductive biology of tropical Lowland rain forest trees. II. Pollination systems. Am J Bot 72:346–356CrossRefGoogle Scholar
  4. Bawa KS, Perry DR, Beach JH (1985b) Reproductive biology of tropical Lowland rain forest tress. I. Sexual systems and incompatibility mechanisms. Am J Bot 72:331–345CrossRefGoogle Scholar
  5. Becerra JX, Venable DL (2008) Sources and sinks of diversification and conservation priorities for the Mexican tropical dry forest. PLoS One 3:e3436PubMedCentralPubMedCrossRefGoogle Scholar
  6. Calvo-Alvarado J, McLennan B, Sánchez-Azofeifa A, Garvin T (2009) Deforestation and forest restoration in Guanacaste, Costa Rica: putting conservation policies in context. For Ecol Manage 258:931–940CrossRefGoogle Scholar
  7. Campell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12(7):1979–1991CrossRefGoogle Scholar
  8. Cascante A, Quesada M, Lobo J, Fuchs EA (2002) Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv Biol 16:137–147CrossRefGoogle Scholar
  9. Cavagnaro PF, Cavagnaro JB, Lemes JL et al (2006) Genetic diversity among varieties of the native forage grass Trichloris crinita based on AFLP markers, morphological characters, and quantitative agronomic traits. Genome 49:906–918PubMedCrossRefGoogle Scholar
  10. Cavers S, Navarro C, Lowe AJ (2003) Chloroplast DNA phylogeography reveals colonization history of a neotropical tree, Cedrela odorata L., in Mesoamerica. Mol Ecol 12(6):1451–1460PubMedCrossRefGoogle Scholar
  11. Cavers S, Navarro C, Hopkins P et al (2005) Regional and population-scale influences on genetic diversity partitioning within Costa Rican populations of the pioneer tree Vochysia ferruginea Mart. Silvae Genetica 54:7Google Scholar
  12. Chavarría U, González J, Zamora N (2001) Árboles comunes del Parque Nacional Palo Verde. INBio, Heredia, pp 138–139Google Scholar
  13. Dafreville S, Payet G, Simiand C et al (2011) Isolation and characterization of microsatellite markers of an endangered tropical tree, Sideroxylon majus, and cross-species amplification in other Sapotaceae species. Conserv Genet Resour 3:701–704CrossRefGoogle Scholar
  14. Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15Google Scholar
  15. Dunphy BK, Hamrick JL (2007) Estiamtion of gene flow into fragmented polpulations of Bursera simaruba (Burseraceae) in the dry-forest life zone of Puerto Rico. Am J Bot 94:1786–1794PubMedCrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620PubMedCrossRefGoogle Scholar
  17. Fournier LA, García EG (1998) Nombres Vernaculares y científicos de los árboles de Costa Rica, Primera edición. Ediciones Guayacán, San José, Costa Rica, p 80Google Scholar
  18. Fox CW, Reed DH (2010) Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65:246–258PubMedCrossRefGoogle Scholar
  19. Frankie GW, Haber WA, Vinson SB, Bawa KS, Ronchi PS, Zamora N (2004) Flowering phenology and pollination systems diversity in the seasonal dry forest. In: Frankie GW, Mata A, Vinson SB (eds) Biodiversity conservation in Costa Rica. University of California Press, Berkeley, pp 17–29Google Scholar
  20. Fuchs EJ, Hamrick JL (2010) Genetic diversity in the endangered tropical tree, Guaiacum sanctum (Zygophyllaceae). J Heredity 101:284–291CrossRefGoogle Scholar
  21. Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conserv Biol 17:150–157Google Scholar
  22. García EG (2004) Frutos, semillas y plántulas del bosque seco de Costa Rica: Fabáceas Arborescentes, Primera edición. Aristos, Heredia, pp 52–53Google Scholar
  23. Gilbert KJ, Andrew RL, Bock DG et al (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. Mol Ecol 21(20):4925–4930PubMedCrossRefGoogle Scholar
  24. Gillies ACM, Cornelius JP, Newton AC et al (1997) Genetic variation in Costa Rica populations of the tropical timber species Cedrela odorata L., assessed using RAPDs. Mol Ecol 6(12):1133–1145CrossRefGoogle Scholar
  25. Gonzáles E, Hamrick JL, Smouse PE, Dyer RJ (2006) Pollen-mediated gene dispersal within continuous and fragmented populations of a forest understorey species, Trillium cuneatum. Mol Ecol 15(8):2047–2058PubMedCrossRefGoogle Scholar
  26. Gonzáles E, Hamrick JL, Smouse PE et al (2010) The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). J Heredity 101:133–143CrossRefGoogle Scholar
  27. González-Zamora A, Arroyo-Rodríguez V, Oyama K et al (2012) Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for seed dispersal and forest regeneration. PLoS One 7:e46852PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hall JS, Ashton MS, Garen EJ, Jose S (2011) The ecology and ecosystem services of native trees: implications for reforestation and land restoration in Mesoamerica. For Ecol Manage 261:1553–1557CrossRefGoogle Scholar
  29. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant. Phil Trans R Soc Lond B 351:1291–1298CrossRefGoogle Scholar
  30. Huang J, He C (2010) Population structure and genetic diversity of Huperzia serrata (Huperziaceae) based on amplified fragment length polymorphism (AFLP) markers. Bioch Syst Ecol 38:1137–1147CrossRefGoogle Scholar
  31. Huson DH, Bryant D (2005) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  32. Jeong JH, Kim EH, Guo W et al (2010) Genetic diversity and structure of the endangered species Megaleranthis saniculifolia in Korea as revealed by allozyme and ISSR markers. Plant Syst Evol 289:67–76CrossRefGoogle Scholar
  33. Jiménez Madrigal Q (1999) Árboles maderables en peligro de extinción en Costa Rica, Segunda Edición. Heredia, pp 156–158Google Scholar
  34. Jiménez Madrigal Q, Poveda Madrigal LJ (1996) Lista Actualizada de los árboles maderables de Costa Rica. Universidad Nacional, Heredia, p 34Google Scholar
  35. Jiménez Madrigal Q, Estrada Chavarría A, Rodríguez González A, Arroyo Mora P (1999) Manual Dendrológico de Costa Rica, Segunda Edición. Instituto Tecnológico de Costa Rica, Cartago, p 103Google Scholar
  36. Kafkas S (2006) Phylogenetic analysis of the genus Pistacia by AFLP markers. Plant Syst Evol 262:113–124CrossRefGoogle Scholar
  37. Koopman WJM (2005) Phylogenetic signal in AFLP data sets. Syst Biol 54:197–217PubMedCrossRefGoogle Scholar
  38. Koopman WJM, Li Y, Coart E et al (2006) Linked vs. unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression. Mol Ecol 16(2):243–256CrossRefGoogle Scholar
  39. Koopman WJM, Wissemann V, Cock KD et al (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Am J Bot 95:353–366PubMedCrossRefGoogle Scholar
  40. Kremer A, Caron H, Cavers S et al (2005) Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity 95:274–280PubMedCrossRefGoogle Scholar
  41. Kremer A, Ronce O, Robledo-Arnuncio JJ et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Letter 15:378–392CrossRefGoogle Scholar
  42. Lesser MR, Parchman TL, Jackson ST (2013) Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations. Mol Ecol 22(10):2640–2652PubMedCrossRefGoogle Scholar
  43. Lobo J, Barrantes G, Castillo M et al (2007) Effects of selective logging on the abundance, regeneration and short-term survival of Caryocar costaricense (Caryocaceae) and Peltogyne purpurea (Caesalpinaceae), two endemic timber species of southern Central America. For Ecol Manage 245:88–95CrossRefGoogle Scholar
  44. Lowe AJ, Goodall-Copestake WP, Caron H et al (2002) A set of polymorphic microsatellites for Vochysia ferruginea, a promising tree for land reclamation in the Neotropics. Mol Ecol Notes 2(3):209–210Google Scholar
  45. Lowe AJ, Jourde B, Breyne P et al (2003) Fine-scale genetic structure and gene flow within Costa Rican populations of mahogany (Swietenia macrophylla). Heredity 90:268–275PubMedCrossRefGoogle Scholar
  46. Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112PubMedCrossRefGoogle Scholar
  47. Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273PubMedCrossRefGoogle Scholar
  48. Muñoz M, Warner J, Albertazzi FJ (2010) Genetic diversity analysis of the endangered slipper orchid Phragmipedium longifolium in Costa Rica. Plant Syst Evol 290:217–223CrossRefGoogle Scholar
  49. Navarro C, Cavers S, Colpaert N et al (2005) Chloroplast and total genomic diversity in the endemic Costa Rican tree Lonchocarpus costaricensis (J. D. Smith) Pittier (Papilionaceae). Silvae Genetica 54:293–300Google Scholar
  50. Palacios RA, Burghardt AD, Frías-Hernández JT et al (2011) Comparative study (AFLP and morphology) of three species of Prosopis of the Section Algarobia: P. juliflora, P. pallida, and P. limensis. Evidence for resolution of the “P. pallidaP. juliflora complex”. Plant Syst Evol 298:165–171CrossRefGoogle Scholar
  51. Park A, van Breugel M, Ashton MS et al (2010) Local and regional environmental variation influences the growth of tropical trees in selection trials in the Republic of Panama. For Ecol Manage 260:12–21CrossRefGoogle Scholar
  52. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295CrossRefGoogle Scholar
  53. Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457CrossRefGoogle Scholar
  54. Poelchau MF, Hamrick JL (2012) Differential effects of landscape level environmental features on genetic structure in three codistributed tree species in Central America. Mol Ecol 21(20):4970–4982PubMedCrossRefGoogle Scholar
  55. Poelchau MF, Hamrick JL (2013a) Comparative phylogeography of the three common Neotropical tree species. J Biogeogr 40:618–631CrossRefGoogle Scholar
  56. Poelchau MF, Hamrick JL (2013b) Paleodistribution modelling does not support disjunct Pleistocene refugia in several Central American plant taxa. J Biogeogr 40:662–675CrossRefGoogle Scholar
  57. Pometti CL, Bessega CF, Vilardi JC, Saidman BO (2012) Landscape genetic structure of natural populations of Acacia caven in Argentina. Tree Genet Genomes 8:911–924CrossRefGoogle Scholar
  58. Prentis PJ, Vesey A, Meyers NM, Mather PB (2004) Genetic structuring of the stream lily Helmholtzia glaberrima (Philydraceae) within Toolona Creek, south-eastern Queensland. Aust J Bot 52(2):201–207CrossRefGoogle Scholar
  59. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  60. Raven PH, Chase JM, Pires JC (2011) Introduction to special issue on biodiversity 1. Am J Bot 98:333–335PubMedCrossRefGoogle Scholar
  61. Reck M, Benício LM, Ruas EA et al (2011) Karyotype and AFLP data reveal the phylogenetic position of the Brazilian endemic Hypochaeris catharinensis (Asteraceae). Plant Syst Evol 296:231–243CrossRefGoogle Scholar
  62. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  63. Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571PubMedCrossRefGoogle Scholar
  64. Rocha OJ, Aguilar G (2001a) Reproductive biology of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica: a comparison between trees left in pastures and trees in continuous forest. Am J Bot 88:1607–1614PubMedCrossRefGoogle Scholar
  65. Rocha OJ, Aguilar G (2001b) Variation in the breeding behavior of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica. Am J Bot 88:1600–1606PubMedCrossRefGoogle Scholar
  66. Savelkoul PHM, Aarts HJM, Haas JD et al (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microb 37:3083–3091Google Scholar
  67. Soldati MC, Fornes L, Van Zonneveld M et al (2013) An assessment of the genetic diversity of Cedrela balansae C. DC. (Meliaceae) in Northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Bioch Syst Ecol 47:45–55CrossRefGoogle Scholar
  68. Steiger DL, Nagai C, Moore PH et al (2002) AFLP analysis of genetic diversity within and among Coffea arabica cultivars. Theor Appl Genet 105:209–215PubMedCrossRefGoogle Scholar
  69. Swenson U, Richardson JE, Bartish IV (2008) Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24:1006–1031CrossRefGoogle Scholar
  70. Trapnell DW, Hamrick JL (2004) Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 13(9):2655–2666PubMedCrossRefGoogle Scholar
  71. Trapnell DW, Hamrick JL (2007) Floral display and mating patterns within populations of the neotropical epiphytic orchid, Laelia rubescens (Orchidaceae). Am J Bot 93:1010–1018CrossRefGoogle Scholar
  72. Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11(1):139–151PubMedCrossRefGoogle Scholar
  73. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:8CrossRefGoogle Scholar
  74. Vuylsteke M, Peleman JD, Van Eijk MJ (2007) AFLP technology for DNA fingerprinting. Nat Protoc 2:1387–1398PubMedCrossRefGoogle Scholar
  75. Ward M, Dick CW, Gribel R, Lowe AJ (2005) To self, or not to self… A review of outcrossing and pollen-mediated gene flow in neotropical trees. Heredity 95:246–254PubMedCrossRefGoogle Scholar
  76. White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2042PubMedCentralPubMedCrossRefGoogle Scholar
  77. Wishnie MH, Dent DH, Mariscal E et al (2007) Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. For Ecol Manage 243:39–49CrossRefGoogle Scholar
  78. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8(6):907–913PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Heidy M. Villalobos-Barrantes
    • 1
    • 2
    Email author
  • Elmer G. García
    • 3
  • Andrew J. Lowe
    • 4
    • 5
  • Federico J. Albertazzi
    • 1
    • 3
  1. 1.Centro de Investigación en Biología Celular y MolecularUniversidad de Costa RicaSan JoséCosta Rica
  2. 2.Escuela de QuímicaUniversidad de Costa RicaSan JoséCosta Rica
  3. 3.Escuela de BiologíaUniversidad de Costa RicaSan JoséCosta Rica
  4. 4.School of Earth and Environmental SciencesUniversity of AdelaideNorth TerranceAustralia
  5. 5.Department of Environment Water and Natural Resources, Science Resource CentreState Herbarium of South AustraliaHackneyAustralia

Personalised recommendations