Advertisement

Plant Systematics and Evolution

, Volume 300, Issue 9, pp 2009–2017 | Cite as

Familial placement of Wightia (Lamiales)

  • Qing-Mei Zhou
  • Søren Rosendal Jensen
  • Guo-Li Liu
  • Shuang Wang
  • Hong-Qing Li
Original Article

Abstract

The familial placement of Wightia has long been a problem. Here, we present a comprehensive phylogenetic inspection of Wightia based on noncoding chloroplast loci (the rps16 intron and the trnL–F region) and nuclear ribosomal internal transcribed spacer, and on chemical analysis. A total of 70 samples (including 51 genera from 13 families of Lamiales) were employed in a molecular study. Phylograms suggest that Wightia is sister to Paulownia or Phrymaceae; species tree shows Wightia and Paulownia are sister groups which clustered with Phrymaceae in an unresolved clade. Chemical evidence shows affinity of Wightia to Paulowniaceae. With the addition of morphological, palynological and ecological characters, we suppose a familial position of Wightia belonging to or close to Paulowniaceae. Brandisia (a member of Orobanchaceae) does not have a close relationship with Wightia.

Keywords

Iridoids Lamiales Molecular systematic Paulowniaceae Wightia 

Notes

Acknowledgments

We thank Jie Liu and Li–Na Dong (Kunming Institute of Botany, Chinese Academy of Sciences), You-Fang Wang, Ying-Ying Wang and Shen-Zhan Xiong (East China Normal University), and Zheng-Wei Wang and Bin-Jie Ge (Shanghai Chenshan Botanical Garden) for collecting specimens. We also thank the staff of the Royal Botanic Gardens Kew, England, for growing and providing the material of Hemichaena fruticosa. Our study was funded by the National Natural Science Foundation of China (Grant No. 31270242) and the Shanghai Natural Science Foundation (Grant No. 10ZR1408600).

Supplementary material

606_2014_1029_MOESM1_ESM.doc (196 kb)
Supplementary material 1 (DOC 197 kb)

References

  1. Adriani C, Bonini C, Javarone C, Trogolo C (1981) Isolation and characterization of paulownioside, a new highly oxygenated iridoid glucoside from Paulownia tomentosa. J Nat Prod 44:739–744CrossRefGoogle Scholar
  2. Albach DC, Li HQ, Zhao N, Jensen SR (2007) Molecular systematics and phytochemistry of Rehmannia (Scrophulariaceae). Biochem Syst Ecol 35:293–300CrossRefGoogle Scholar
  3. Albach DC, Kun Y, Jensen SR, Li HQ (2009) Phylogenetic placement of Triaenophora (formerly Scrophulariaceae) with some implications for the phylogeny of Lamiales. Taxon 58(3):749–756Google Scholar
  4. Argue CL (1980) Pollen morphology in the genus Mimulus (Scrophulariaceae) and its taxonomic significance. Am J Bot 67(1):68–87CrossRefGoogle Scholar
  5. Barker WR, Nesom GL, Beardsley PM, Fraga NS (2012) A taxonomic conspectus of Phrymaceae: a narrowed circumscriptions for Mimulus, new and resurrected genera, and new names and combinations. Phytoneuron 39:1–60Google Scholar
  6. Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93(7):1039–1051PubMedCrossRefGoogle Scholar
  7. Bentham G, Hooker JD (1876) Scrophulariaceae. In: Bentham G, Hooker JD (eds) Genera plantarum (vol 2). Williams and Norgaate, London, pp 913–980Google Scholar
  8. Bremer B, Bremer K, Heidari N, Erixon P, Olmstead RG, Anderberg AA, Källersjö M, Barkhordarian E (2002) Phylogenetics of asteroids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol Phylogent Evol 24(2):274–301CrossRefGoogle Scholar
  9. Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91PubMedGoogle Scholar
  10. Campbell DH (1930) The relationships of Paulownia. Bull Torrey Botantic Club 57:47–50CrossRefGoogle Scholar
  11. Chadwell TB, Wagstaff SJ, Cantino PD (1992) Pollen morphology of Phryma and some putative relatives. Syst Bot 17(2):210–219CrossRefGoogle Scholar
  12. Damtoft S, Jensen SR (1993) Tomentoside and 7-hydroxytomentoside, two iridoid glucosides from Paulownia tomentosa. Phytochemistry 34(6):1636–1638CrossRefGoogle Scholar
  13. Doyle JJ (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  14. Fischer E (2004) Scrophulariaceae. In: Kadereit JW (ed) The families and genera of flowering plants (vol 7). Springer, Berlin, pp 333–432Google Scholar
  15. Gleason HA (1952) The new Britton and Brown illustrated flora of the northeastern United States and adjacent Canada (vol. 3). New York Botanical Garden, New YorkGoogle Scholar
  16. Hallier H (1903) Ueber die abgrenzung und verwandtschaftdereinzelnensippenbei den Scrophularineen. Bull L’Herbier Boisser (ser. 2) 3:181–207Google Scholar
  17. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174PubMedCrossRefGoogle Scholar
  18. Hegnauer R, Kooiman P (1978) The taxonomic significance of iridoids of Tubiflorae sensu Wettstein. Planta Med 33:1–33PubMedCrossRefGoogle Scholar
  19. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hong DY, Yang HB, Jin CL, Holmgren NH (1998) Scrophulariaceae. In: Wu ZY, Raven PH (eds) Flora of China (vol 18). Science Press, Beijing, pp 1–212Google Scholar
  21. Hu SY (1959) A monograph of the genus Paulownia. Q J Taiwan Mus 12:1–54Google Scholar
  22. Jensen SR, Albach DC, Ohno T, Grayer RJ (2005) Veronica: iridoids and cornoside as chemosystematic markers. Biochem Syst Ecol 33:1031–1047CrossRefGoogle Scholar
  23. Jensen SR, Li HQ, Albach DC, Gotfredsen CH (2008) Phytochemistry and molecular systematics of Triaenophora rupestris and Oreosolen wattii (Scrophulariaceae). Phytochemistry 69:2162–2166PubMedCrossRefGoogle Scholar
  24. Lawrence GHM (1951) Taxonomy of vascular plants. Macmillan, New YorkGoogle Scholar
  25. Li HL (1944) New or noteworthy plants from Southwestern China. J Arnold Arbor 25:316Google Scholar
  26. Li HL (1947) Relationship and taxonomy of genus Brandisia. J Arnold Arbor 28:127–136Google Scholar
  27. Liang ZY, Chen ZY (1995) An approach to the relationship of the genus Paulwnia and its related genera. J Huazhong Agric Univ 14(5):493–495 (in Chinese)Google Scholar
  28. Maheshwari JK (1961) The Genus Wightia Wall. in India with a discussion on its systematic position. Bull Bot Surv India 3(1):31–35Google Scholar
  29. McNeal JR, Bennett JR, Wolfe AD, Mathews S (2013) Phylogeny and origins of holoparasitism in Orobanchaceae. Am J Bot 100(5):971–983PubMedCrossRefGoogle Scholar
  30. Müller K, Borsch T, Legendre L, Porembski S, Theisen I, Barthlott W (2004) Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biol 6(4):477–490PubMedCrossRefGoogle Scholar
  31. Nakai T (1949) Classes, ordinae, familiae, subfamilieae, tribus, genera nova quae attinent ad plantas Koreanas. J Jpn Bot 24:8–14Google Scholar
  32. Nylander JAA (2004) MrModeltest v2.2. Program distributed by the author. Uppsala (Sweden): Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  33. Olmstead RG, Depamphilis CW, Wolfe AD (2001) Distintegration of the Scrophulariaceae. Am J Bot 88(2):348–361PubMedCrossRefGoogle Scholar
  34. Oxelman B, Lidén M, Berglund D (1997) Chloroplast rps16 intronphylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206:393–410CrossRefGoogle Scholar
  35. Oxelman B, Kornhall P, Olmstead RG, Bremer B (2005) Further disintegration of the Scrophulariaceae. Taxon 54:411–425CrossRefGoogle Scholar
  36. Ozaki Y, Johne S, Hesse M (1979) Natural organic substances. 174. Iridoid glucosides from Leucocarpus perfoliatus G. Don. Helv Chimica Acta 62:2708–2711CrossRefGoogle Scholar
  37. Park JM, Manen JF, Colwell AE, Schneeweiss GM (2008) A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera. J Plant Res 121(4):365–376PubMedCrossRefGoogle Scholar
  38. Pennell FW (1920) Scrophulariaceae of the south-eastern United States. Proc Acad Nat Sci Phila 71:224–291Google Scholar
  39. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  40. Rahmanzadeh R, Müller K, Fischer E, Bartels D, Borsch T (2005) The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulariaceae (Lamiales). Plant Biol 7(1):67–78PubMedCrossRefGoogle Scholar
  41. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  42. Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. Bioinformatics 11:7PubMedPubMedCentralGoogle Scholar
  43. Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b.10 for 32-bit Microsoft Windows. Sinauer, SunderlandGoogle Scholar
  44. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedPubMedCentralCrossRefGoogle Scholar
  46. Umarova RU, Gorovits MB, Abubakirov NK (1988) Mussaenoside of Dodartia orientalis. Khim Prir Soedin 2:301–302Google Scholar
  47. van Steenis CGGJ (1949) Notes on the genus Wightia (Scrophulariaceae). Bull Bot Gard Buitenzorg (ser. 3) 18:213–227Google Scholar
  48. Venora G, Blangiforti S, Frediani M, Maggini F, Gelati MT, Castiglione MR, Cremonini R (2000) Nuclear DNA contents, rDNAs, chromatin organization, and karyotype evolution in Vicia sect. faba. Protoplasma 213:118–125CrossRefGoogle Scholar
  49. Wallich N (1830) Plantae Asiaticae Rariores (vol. 1). Treuttel and Würtz, LondonGoogle Scholar
  50. Wei ZX (1989) Pollen morphology of Wightia and its taxonomic significance. Acta Bot Yunnanica 1:65–70 (in Chinese)Google Scholar
  51. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322CrossRefGoogle Scholar
  52. Willis JC (1955) A dictionary of the flowering plants and ferns. Cambridge University Press, CambridgeGoogle Scholar
  53. Wolfe AD, Randle CP, Liu L, Steiner KE (2005) Phylogeny and biogeography of Orobanchaceae. Folia Geobot 40:115–134CrossRefGoogle Scholar
  54. Xia Z, Wang YZ, Smith JF (2009) Familial placement and relations of Rehmannia and Triaenophora (Scrophulariaceae s. l.) inferred from five gene regions. Am J Bot 96(2):519–530PubMedCrossRefGoogle Scholar
  55. Yan K, Zhao N, Li HQ (2007) Systematic relationships among Rehmannia (Scrophulariaceae) species. Acta Bot Boreali-Occidentalia Sinica 27:1112–1120 (in Chinese with English abstract)Google Scholar
  56. Young ND, DePamphilis CW (2005) Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BioMed Center Evol Biol 5:16CrossRefGoogle Scholar
  57. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, University of Texas at AustinGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Qing-Mei Zhou
    • 1
  • Søren Rosendal Jensen
    • 2
  • Guo-Li Liu
    • 1
  • Shuang Wang
    • 1
  • Hong-Qing Li
    • 1
  1. 1.School of Life SciencesEast China Normal UniversityShanghaiChina
  2. 2.Department of ChemistryThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations