Plant Systematics and Evolution

, Volume 300, Issue 9, pp 1995–2008 | Cite as

The fine morphology of pollen grains from the pollen chamber of a supposed ginkgoalean seed from the Middle Jurassic of Uzbekistan (Angren locality)

  • Natalia Zavialova
  • Natalia Gordenko
  • Natalya Nosova
  • Svetlana Polevova
Original Article

Abstract

Pollen grains of Cycadopites-type were found in the pollen chamber of a supposed ginkgoalean seed Allicospermum sp. from the Middle Jurassic deposits of Uzbekistan (Angren locality). The pollen grains were studied with help of LM, CLSM, SEM, and TEM. All pollen grains show the identical morphology and exine ultrastructure allowing us to suppose the same botanical affinity. The pollen morphological data do not contradict the ginkgoalean interpretation of the seed; therefore, the pollen grains and the seed most probably did belong to the same parent plant. The pollen grains are monosulcate, the non-apertural surface is nearly psilate, with low short elements, which are occasionally scattered over the surface or more densely distributed. The aperture and adjacent areas appear to bear more distinct sculpturing. The ectexine is composed of a prominent solid tectum, a thin infratectum, and a thin foot layer. The infratectum is formed of one row of alveolae, which are more voluminous laterally, where the ultrastructure is more easily understandable. The endexine is multilamellate, although it is evident only in some regions of stained sections. Towards the aperture the ectexine becomes gradually thinner; over the aperture no sublayers can be discerned within the ectexine. The ectexine of the apertural region repeatedly varies in thickness, reflecting a sculpturing surface of this region. The obtained data contribute to the knowledge about the exine ultrastructure of ginkgoaleans; nonetheless, a TEM study of ginkgoalean pollen grains extracted from pollen organs is still highly desirable. We also considered pluses and minuses of CLSM: it failed to substitute SEM, since the surface pattern under study was too fine, but demonstrated the general morphology of the pollen grains under study better than conventional LM. The possibility of viewing virtual sections of any area of the pollen grain was profitable for later interpretation of TEM sections. CLSM would give better results in interpreting relatively large palynological objects with distinct sculptural elements, a complicated architecture, variously arranged appendages, or possessing cameras.

Keywords

Exine ultrastructure Monosulcate pollen Jurassic Ginkgoaleans 

References

  1. Audran JC (1987) Comparaison des ultrastructures exiniques et des modalités de l’ontogenèse pollinique chez les Cycadales et Ginkgoales actuelles (Préspermaphytes). Bulletin de la Société botanique de France (Actual Bot) 134:9–18CrossRefGoogle Scholar
  2. Audran JC, Masure E (1978) La sculpture et l’infrastructure du sporoderme de Ginkgo biloba comparées à celles des enveloppes polliniques des Cycadales. Rev Palaeobot Palynol 26:363–387CrossRefGoogle Scholar
  3. Balme B (1995) Fossil in situ spores and pollen grains: an annotated catalogue. Rev Palaeobot Palynol 87:81–323CrossRefGoogle Scholar
  4. Crane PR, Herendeen PS (2009) Bennettitales from the Gristhorpe Bed (Middle Jurassic) at Cayton Bay, Yorkshire, UK. Amer J Bot 96:284–295CrossRefGoogle Scholar
  5. Geyer G (1973) Ultrahistochemie. Histochemische Arbeitsvorschriften für die Elektronenmikroskopie. Fischer, JenaGoogle Scholar
  6. Gomolitzky NP (1962a) Application of epidermal analysis to the study of fossil plants of Angren. Reports of palaeobotanical conference. Tomsk University, Tomsk (in Russian)Google Scholar
  7. Gomolitzky NP (1962b) New conifer genus Podocarpophyllum from the Jurassic coal-bearing deposits of Angren in Central Asia. Bot J 47(7):1029–1032 (in Russian)Google Scholar
  8. Gomolitzky NP (1963) On the epidermal morphology of Czekanowskia latifolia Tur.-Ket. Bot J 48(12):1199–1830 (in Russian)Google Scholar
  9. Gomolitzky NP (1974) New Jurassic cycadophytes from Angren (Uzbekian SSR). Bot J 59(8):110–115 (in Russian)Google Scholar
  10. Gomolitzky NP, Lobanova AV (1969) On the stratigraphy of Jurassic deposits of Angren. Sov Geol 9:110–115 (in Russian)Google Scholar
  11. Gomolitzky NP, Khudaiberdyev RKh, Yunusov UK (1981) On the Jurassic flora of Angren, vol 3. Palaeobotany of Uzbekistan, Tashkent, pp 3–70 (In Russian)Google Scholar
  12. Gordenko NV (in press) A new interpretation of seeds of Grenana Samylina (Gymnospermae) from the Middle Jurassic of Angren, Uzbekistan. Palaeontol JGoogle Scholar
  13. Jin B, Zhang L, Lu Y, Wang D, Jiang XX, Zhang M, Wang L (2012) The mechanism of pollination drop withdrawal in Ginkgo biloba L. BMC Plant Biol 12:59PubMedCrossRefPubMedCentralGoogle Scholar
  14. Kuzichkina YuM, Sixtel TA (1966) Stratigraphy of Uzbekian SSR. In: Mesozoic and Cenozoic, vol 2. FAN UzSSR, TashkentGoogle Scholar
  15. Maslova NP, Tekleva MV (2012) Infructescences of Friisicarpus sarbaensis sp. nov. (Platanaceae) from the Cenomanian–Turonian of Western Kazakhstan. Palaeontol J 46(4):433–443CrossRefGoogle Scholar
  16. Meyer NR (1977) Comparative morphological studies of the development and ultrastructure in the sporoderm of gymnosperms and primitive angiosperms. Dissertation, Komarov Botanical Institute, Academy of Sciences of the USSR (in Russian)Google Scholar
  17. Nosova NV (1998a) The Jurassic flora of Angren (Uzbekistan). Palaeont Zh 6:78–86 (in Russian)Google Scholar
  18. Nosova NV (1998b) The new species of the genus Elatocladus (Pinopsida) from the Middle Jurassic deposits of Angren (Uzbekistan). Paleontol J 83(8):93–98 (in Russian)/Palaeontol J 32 (6):624–632 (English translation)Google Scholar
  19. Nosova NV (1999) On the genera Czekanowskia and Phoenicopsis (Czekanowskiales) from the Middle Jurassic deposits of Angren (Uzbekistan). Bot J 84(10):112–117 (in Russian)Google Scholar
  20. Nosova NV (2009) New species of the genus Pseudotorellia Florin from the Middle Jurassic deposits of Angren (Uzbekistan). Bot J 94(9):1382–1385 (in Russian)Google Scholar
  21. Nosova N (2012) Female reproductive structures of Ginkgo gomolitzkyana N. Nosova, sp. nov. from the Middle Jurassic of Angren (Uzbekistan). Palaeobotany 3:62–91 (in Russian)Google Scholar
  22. Nosova N (2013) Revision of the genus Grenana Samylina from the Middle Jurassic of Angren. Uzbekistan Rev Palaeobot Palynol 197:226–252CrossRefGoogle Scholar
  23. Nosova NV, Gordenko NV (2012) New interpretation of the genus Grenana Samylina (gymnosperms) from the Middle Jurassic of Uzbekistan. Japan J Palynol (special issue. V. 58. Abstracts: IPC/IOPC. P. 171)Google Scholar
  24. Osborn JM, Taylor TN (1995) Pollen morphology and ultrastructure of the Bennettitales: in situ pollen of Cycadeoidea. Am J Bot 82:1074–1081CrossRefGoogle Scholar
  25. Rohr R (1974) Étude cytologique de la microsporogénèse et de la spermatogénèse in vitro chez une gymnosperme (Taxus baccata) et une préphanérogame (Ginkgo biloba). Thèse de spécialité, NancyGoogle Scholar
  26. Sahashi N, Ueno J (1986) Pollen morphology of Ginkgo biloba and Cycas revoluta. Can J Bot 64:3075–3078CrossRefGoogle Scholar
  27. Samylina VA (1990) Grenana, a new genus of seed ferns from the Jurassic of Central Asia. Bot J 75(6):846–850 (in Russian)Google Scholar
  28. Samylina VA, Kirichkova AI (1991) The genus Czekanowskia (taxonomy, history, occurrence and stratigraphical importance). Nauka, Leningrad (in Russian)Google Scholar
  29. Samylina VA, Luzina NV (1995) Significance of leaf epidermal characters for the taxonomy of Jurassic gymnosperms of Angren (Uzbekistan). Bot J 80(1):24–32 (in Russian)Google Scholar
  30. Sixtel TA (1939) Some data on Jurassic deposits of the Angren River valley. Socialistic science and technique, 7–8. Tashkent (in Russian)Google Scholar
  31. Sixtel TA (1953) Materials to the Jurassic flora of Angren coal field. In: Proceedings of Institute of Geology, Academy of Sciences of UzSSR 7, Palaeontology and stratigraphy of Central Asia 2, Academy of Sciences UzSSR, Tashkent (in Russian)Google Scholar
  32. Taylor TN (1973) A consideration of the morphology, ultrastructure, and multicellular microgametophyte of Cycadeoidea dacotensis pollen. Rev Palaeobot Palynol 16:157–164CrossRefGoogle Scholar
  33. Taylor TN, Taylor EL, Krings M (2009) Palaeobotany, the biology and evolution of fossil plants, 2nd edn. Academic Press, BurlingtonGoogle Scholar
  34. Tekleva MV, Polevova SV, Zavialova NE (2007) On some peculiarities of sporoderm structure in members of the Cycadales and Ginkgoales. Palaeontol J 41(11):1162–1178CrossRefGoogle Scholar
  35. Townrow JA (1960) The Peltaspermaceae, a pteridosperm family of Permian and Triassic age. Palaeontology 3:333–361Google Scholar
  36. Troitsky VI, Gomolitzky NP (1996) Jurassic Continental Deposits of Middle Asia. In: Morales M (ed) The Continental Jurassic. Mus North Ariz Bull 60:415–420Google Scholar
  37. Ueno J (1960) On the fine structure of the cell walls of some gymnosperm pollen. Biol J Nara Women’s University 10:19–25Google Scholar
  38. Ward JV, Doyle JA, Hotton CL (1989) Probable granular angiosperm magnoliid pollen from the Early Cretaceous. Pollen Spores 31:113–132Google Scholar
  39. Wu X, Yang X, Zhou Z (2006) Ginkgoalean ovulate organs and seeds associated with Baiera furcata-type leaves from the Middle Jurassic of Qinghai Province, China. Rev Palaeobot Palynol 138:209–225CrossRefGoogle Scholar
  40. Yang XJ, Friis EM, Zhou ZY (2008) Ovule-bearing organs of Ginkgoites ginkgoidea (Tralau) comb. nov., and associated leaves from the Middle Jurassic of Scania, South Sweden. Rev Palaeobot Palynol 149:1–17CrossRefGoogle Scholar
  41. Zavialova N, van Konijnenburg Cittert J (2012) Exine ultrastructure of in situ pollen from the cycadalean cone Androstrobus prisma Thomas et Harris 1960 from the Jurassic of England. Rev Palaeobot Palynol 173:15–22CrossRefGoogle Scholar
  42. Zavialova N, van Konijnenburg-van Cittert J (2011) Exine ultrastructure of in situ peltasperm pollen from the Rhaetian of Germany and its implications. Rev Paleobot Palynol 168(1):7–20CrossRefGoogle Scholar
  43. Zavialova N, van Konijnenburg-van Cittert J, Zavada M (2009) The pollen ultrastructure of Williamsoniella coronata Thomas (Bettettitales) from the Bajocian of Yorkshire. Int J Plant Sci 170(9):1195–1200CrossRefGoogle Scholar
  44. Zavialova N, Markevich V, Bugdaeva E, Polevova S (2011) The ultrastructure of fossil dispersed monosulcate pollen from the Early Cretaceous of Transbaikalia, Russia. Grana 50:182–201CrossRefGoogle Scholar
  45. Zhang Z-M, Cui K-M, Li Z-L (2000) Morphology and lateral germination of pollen in Ginkgo biloba and their implications in evolution. Acta Phytotaxon Sin 38:141–147Google Scholar
  46. Zhou ZY (1997) Mesozoic ginkgoalean megafossils: a systematic review. In: Hori T, Ridge RW, Tulecke W, Del Tredici P, Trémouillaux-Guiller J, Tobe H (eds) Ginkgo biloba—a global treasure from biology to medicine. Springer, Tokyo, pp 183–206CrossRefGoogle Scholar
  47. Zhou Z (2009) An overview of fossil Ginkgoales. Palaeoworld 18:1–22CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Natalia Zavialova
    • 1
  • Natalia Gordenko
    • 1
  • Natalya Nosova
    • 2
  • Svetlana Polevova
    • 3
  1. 1.A.A.Borissiak Palaeontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.V.L.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Department of Higher Plants, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations