Plant Systematics and Evolution

, Volume 300, Issue 8, pp 1877–1893 | Cite as

Fine structure of Quercus pollen from the Holocene sediments of the Sea of Japan

  • Maria V. Tekleva
  • Natalia N. Naryshkina
  • Tatiana A. Evstigneeva
Original Article


Holocene dispersed pollen from two cores from the shelf zone of the Korean Bay and from the deep water zone of the south of the Sea of Japan were studied by means of light and electron (scanning and transmission) microscopy. Three sculpture types were observed: rod-like, rugulate-granulate and (micro)verrucate. Ten conventional groups were separated according to the sporoderm morphology and ultrastructure. Possible specific attribution was suggested based on the comparison with published data on modern and fossil oak pollen. The perspective of further application of electron microscopy for this taxon is discussed.


Quercus Pollen Sculpture Ultrastructure Systematics 



The work was performed at User Facilities Center of M.V.Lomonosov Moscow State University under the financial support of the Ministry of Education and Science of the Russian Federation and at User Facilities Center of A.A. Borissiak Paleontological Institute, Russian Academy of Sciences. The study was supported by the Russian Foundation for Basic Research grant # 12-04-01740-a, by the grant by President RF MK-3156.2014.4 and by the Presidium of the Russian Academy of Sciences, # 14-III-B-06-041.


  1. Box EO, Fujiwara K (2012) A comparative look at bioclimatic zonation, vegetation types, tree taxa and species richness in northeast Asia. Botanica Pacifica 1:5–20Google Scholar
  2. Colombo PM, Lorezone FC, Grigoletto F (1983) Pollen grain morphology supports the taxonomical discrimination of mediterranean oaks (Quercus, Fagaceae). Plant Syst Evol 141:273–284CrossRefGoogle Scholar
  3. Crepet WL, Daghlian CP (1980) Castaneoid inflorescences from the Middle Eocene of Tennessee and the diagnostic value of pollen (at the subfamily level) in the Fagaceae. Am J Bot 67(5):739–757CrossRefGoogle Scholar
  4. Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int J Plant Sci 170:926–940CrossRefGoogle Scholar
  5. Denk T, Tekleva MV (2006) Comparative pollen morphology and ultrastructure of Platanus: implications for phylogeny and evaluation of the fossil record. Grana 45:195–221CrossRefGoogle Scholar
  6. Denk T, Tekleva MV (2014) Pollen morphology and ultrastructure of Quercus with focus on Group Ilex (=Quercus Subgenus Heterobalanus (Oerst.) Menitsky): implications for oak systematics and evolution. Grana (in press)Google Scholar
  7. Denk T, Grimsson F, Zetter R (2010) Episodic migration of oaks to Iceland: evidence for a North Atlantic “land bridge” in the latest Miocene. Am J Bot 97(2):276–287PubMedCrossRefGoogle Scholar
  8. Denk T, Grimsson F, Zetter R (2012) Fagaceae from the early Oligocene of Central Europe: persisting new world and biogeographic links. Rev Palaeobot Palynol 169:7–20CrossRefGoogle Scholar
  9. Dupont R, Dupont S (1972) Etude de pollens de chênes (genre Quercus L.) en microscopie électronique à balayage. C R Séances Acad Sci Ser D 274(17):2503–2506Google Scholar
  10. Evstigneeva TA, Naryshkina NN (2012) Holocene vegetation changes on the north-eastern coast of the Korean Peninsula based on the palynological data. Acta Palaeobot 52(1):147–155Google Scholar
  11. Ferguson DK, Pingen M, Zetter R, Hofmann C–C (1998) Advances in our knowledge of the Miocene plant assemblage from Kreuzau, Germany. Rev Palaeobot Palynol 101:147–177CrossRefGoogle Scholar
  12. Fujiki T, Yasuda Y (2004) Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quart Int 123(125):63–69CrossRefGoogle Scholar
  13. Fujiki T, Morita Y, Miyochi N (1996) Pollen morphology of subgenus Lepidobalanus (Quercus, Fagaceae) in Japan. Jpn J Palynol 42:107–116Google Scholar
  14. Hayashi R, Inoue J, Makito M, Takahara H (2012) Vegetation history during the last 17000 years around Sonenuma Swamp in the eastern shore area of lake Biwa, western Japan: with special reference to changes in species composition of Quercus subgenus Lepidobalanus trees based on SEM pollen morphology. Quart Int 254:99–106CrossRefGoogle Scholar
  15. Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen terminology—an illustrated handbook. Springer, New YorkGoogle Scholar
  16. Hofmann C–C, Zetter R, Draxler I (2002) Pollen- und Sporenvergesellschaftungen aus dem Karpatium des Korneuburger Beckens (Niederösterreich). Beiträge zur Paläontologie Österreichs 27:17–43Google Scholar
  17. Hristova V, Ivanov D (2009) Scanning electron microscope and light microscope study of selected palynomorphs from late Miocene sediments of Sofia Basin, Southwest Bulgaria. Geologica Balcanica 38(1–3):53–58Google Scholar
  18. Jarvis DI, Leopold EB, Liu Y (1992) Distinguishing the pollen of deciduous oaks, evergreen oaks, and certain rosaceous species of southwestern Sichuan Province, China. Rev Palaeobot Palynol 75:259–271CrossRefGoogle Scholar
  19. Kataoka H (2006) Pollen analytical study of sediments from Koigakubo moor, Okayama. Naturalistae 10:47–54Google Scholar
  20. Kedves M, Párdutz Á, Varga B (2002) Experimental investigations on the pollen grains of Quercus robur L. Taiwania 47(1):43–53Google Scholar
  21. Liu YS, Zetter R, Ferguson DK, Mohr BAR (2007) Discriminating fossil evergreen and deciduous Quercus pollen: a case study from the Miocene of eastern China. Rev Palaeobot Palynol 145:289–303CrossRefGoogle Scholar
  22. Makino M, Hayashi R, Takahara H (2009) Pollen morphology of the genus Quercus by scanning electron microscope. Life Environ Sci 61:53–81Google Scholar
  23. Medus J, Gonzalez-Flores G (1984) Pollen morphology of some Mexican oaks. Grana 23(2):77–84CrossRefGoogle Scholar
  24. Menitskij YL (1984) Oaks of Asia. Nauka, Leningrad (in Russian)Google Scholar
  25. Meyer-Melikyan NR, Bovina IY, Kosenko YV, Polevova SV, Severova EE, Tekleva MV, Tokarev PI (2004) Atlas of morphology of Asterales (Asteraceae). Palynomorphology and the development of sporoderm in members of the family Asteraceae. KMK, MoscowGoogle Scholar
  26. Mittre V, Singh G (1963) On the pollen of the western Himalayan oaks. J Ind Bot Soc 42(1):132–134Google Scholar
  27. Monoszon MH (1954) A morphological description of main oak species on the USSR territory. Proc Inst Geogr USSR 61:93–118 (in Russian)Google Scholar
  28. Monoszon MH (1961) On the variation of morphological characters of some oaks. Rep USSR 140(6):1456–1459 (in Russian)Google Scholar
  29. Monoszon MH (1975) An attempt of SEM study of fossil pollen for diagnostics. Bull USSR Ser Geogr 6:110–116 (in Russian)Google Scholar
  30. Nakagawa T, Yasuda Y, Tabata H (1996) Pollen morphology of Himalayan Pinus and Quercus and its importance in palynological studies in Himalayan area. Rev Palaeobot Palynol 91:317–329CrossRefGoogle Scholar
  31. Naryshkina NN (2013) Morphology of recent and fossil pollen of some Quercus L. species. Dissertation, Institute of Biology and Soil Science of Far Eastern Branch of Russian Academy of SciencesGoogle Scholar
  32. Naryshkina NN, Evstigneeva TA (2009) Sculpture of pollen grains of Quercus L. from the Holocene of the south of the sea of Japan. Paleontol J 43(10):1309–1315CrossRefGoogle Scholar
  33. Panahi P, Pourmajidian MR, Fallah A, Pourhashemi M (2012) Pollen morphology of Quercus (subgenus Quercus, section Quercus) in Iran and its systematic implication. Acta Societatis Botanicorum Poloniae 81(1):33–41CrossRefGoogle Scholar
  34. Rowley JR, Gabaraeva NI (2004) Microspore development in Quercus robur (Fagaceae). Rev Palaeobot Palynol 132:115–132CrossRefGoogle Scholar
  35. Rowley JR, Skvarla JJ (1994) Corroded exines from Havinga’s leaf mold experiment—structure of Fagus and Quercus exines. Rev Palaeobot Palynol 83:65–72CrossRefGoogle Scholar
  36. Savitskii VD, Martynuk OO, Shumik MI (1999) Palynomorphological features of Quercus species in Ukraine. Ukr Bot J 56(1):33–35 (in Russian)Google Scholar
  37. Shen C-F, Liu T-S (1984) The taxonomy and pollen morphology of the Fagaceae in Taiwan. Epoch Publishing Co. Ltd, TaipeiGoogle Scholar
  38. Shidei T (1974) Forest vegetation zones. In: Numata M (ed) The flora and vegetation of Japan. Kodansha Ltd./Elsevier Scientific Publ. Co., Tokyo/Amsterdam, pp 87–124Google Scholar
  39. Skvarla JJ, Rowley JR, Chissoe WF (1996) Corroded exines from Havinga’s leaf mold experiment. SEM. Palynology 20:191–207CrossRefGoogle Scholar
  40. Smit AA (1973) A scanning electron microscopical study of the pollen morphology in the genus Quercus. Acta Bot Neerl 22:655–665Google Scholar
  41. Solomon AM (1983a) Pollen morphology and plant taxonomy of white oaks in eastern North America. Am J Bot 70:481–494CrossRefGoogle Scholar
  42. Solomon AM (1983b) Pollen morphology and plant taxonomy of red oaks in eastern North America. Am J Bot 70:495–507CrossRefGoogle Scholar
  43. Suárez-Cervera M, Marquez J, Bosch J, Seoane-Camba J (1994) An ultrastructural study of pollen grains consumed by larvae of Osmia bees (Hymenoptera, Megachilidae). Grana 33(4):191–204CrossRefGoogle Scholar
  44. Takahara H, Kitagawa H (2000) Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeogr Palaeoclimatol Palaeoecol 155(1):123–134CrossRefGoogle Scholar
  45. Tschan GF, Denk T, Von Balthazar M (2008) Credneria and Platanus (Platanaceae) from the Late Cretaceous (Santonian) of Quedlinburg, Germany. Rev Palaeobot Palynol 152:211–236CrossRefGoogle Scholar
  46. Tsukada M (1988) Japan. Vegetation history. Kluwer, DorbrechtGoogle Scholar
  47. Van Benthem F, Clarke G, Punt W (1984) Fagaceae. In: Punt W, Clarke GCS (eds) The Northwest European Pollen Flora, vol 4, no. 33, pp 87–110Google Scholar
  48. Van der Burgh J, Zetter R (1998) Plant mega- and microfossil assemblages from the Brunssumian of “Hambach” near Düren, B.R.D. Rev Palaeobot Palynol 101:209–256CrossRefGoogle Scholar
  49. Wang P, Pu F (2004) Pollen morphology and biogeography of Fagaceae. Guangdong Science and Technology Press, Guangzhou (in Chinese)Google Scholar
  50. Yamazaki T, Takeoka M (1959) Electron microscope investigations on the surface structure of the pollen membrane, based on the replica method. B. Especially on the pollen genus Quercus. J Jpn Forest Soc 41:125–130Google Scholar
  51. Zernitskaya VP (1992) Pollen of Quercus (Fagaceae) from late glacial and Holocene deposits of Belarus. Bot J 77(11):71–74 (in Russian)Google Scholar
  52. Zheng ZH, Wang PL, Pu FD (1999) A comparative study on pollen exine ultrastructure of Nothofagus and the other genera of Fagaceae. Acta Phytotaxonomica Sinica 37(3):253–258Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Maria V. Tekleva
    • 1
  • Natalia N. Naryshkina
    • 2
  • Tatiana A. Evstigneeva
    • 2
  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biology and Soil ScienceFar Eastern Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations