Plant Systematics and Evolution

, Volume 300, Issue 8, pp 1843–1852 | Cite as

Meiotic behavior and pollen fertility in triploid and tetraploid natural populations of Campuloclinium macrocephalum (Eupatorieae, Asteraceae)

  • G. E. Farco
  • M. Dematteis
Original Article


Campuloclinium macrocephalum DC. is a perennial herb widely distributed in the New World and introduced in South Africa, where it is commonly called “pompom weed”. This species is considered one of the most important weeds of Brazil and one of the problematic invasive plants of South Africa. The meiotic system can be studied to assess the ability of a weed to spread, but only few studies on C. macrocephalum have been realized. In this study, we examined the meiotic behavior and pollen fertility of 14 natural populations of C. macrocephalum from Argentina and Uruguay. Meiotic analysis revealed 2 triploid (2n = 3x = 30), 11 tetraploid (2n = 4x = 40) and 1 mixed population (2n = 2x = 20, 2n = 4x = 40). Both, triploid and tetraploid specimens showed a widely variable meiotic behavior with irregular chromosome pairing showing univalents, bivalents, trivalents (in triploids) and tetravalents (in tetraploids) at diacinesis of first meiotic division. Different abnormalities were observed, such as: laggard chromosomes, chromatin bridges, and out of plate chromosomes at metaphase I. During meiosis I (prophase), some cells showed the phenomenon of cytomixis or chromatin transfer between pollen mother cells. The meiotic indexes suggest that only four populations were normally fertile (over 90 % of fertile pollen), indicating meiotically stable plants. The remaining populations share variable pollen fertility, with triploids ranging from 46.64 to 54.83 % and tetraploids varying from 3.54 to 45.30 %. We suggest that polyploidy seems to be recurrent in C. macrocephalum, promoting partial sterility of pollen grains, generating large numbers of individuals by apomixis promoting invasion of crop fields. This study presents the meiotic behavior of this weed, these could be useful for future studies of biological control in areas with no natural enemies.


Chromosome number Cytotype Cytomixis Meiotic abnormalities Polyploidy 



This work has been supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Secretarıa General de Ciencia y Tecnica of the Universidad Nacional del Nordeste, which are greatly appreciated.


  1. Baker HG, Baker H, Stebbins G (1965) Characteristics and modes of origin of weeds. The genetics of colonizing species. 147–68Google Scholar
  2. Baptista-Giacomelli FR, Pagliarini MS, de Almeida JL (2000) Meiotic behavior in several Brazilian oat cultivars (Avena sativa L.). Cytologia 65:371–378CrossRefGoogle Scholar
  3. Basavaiah D, Murthy TCS (1987) Cytomixis in pollen mother cells of Urochloa panicoides P. Beauv. (Poaceae). Cytologia 52:69–74CrossRefGoogle Scholar
  4. Bellucci MM, Roscini C, Mariani A (2003) Cytomixis in pollen mother cells of Medicago sativa L. J Hered 94(6):512–516PubMedCrossRefGoogle Scholar
  5. Bertasso Borges MS, Coleman JR (1998) Embryology and cytogenetics of Eupatorium pauciflorum and E. intermedium (Compositae). Genet Mol Biol 21:507–514CrossRefGoogle Scholar
  6. Bertasso Borges MS, Coleman JR (2005) Cytogenetics and embryology of Eupatorium laevigatum (Compositae). Genet Mol Biol 28:123–128CrossRefGoogle Scholar
  7. Bougourd SM, Jones RN (1997) B chromosomes a physiological. New Phytol 137:43–54CrossRefGoogle Scholar
  8. Burdon JJ, Groves R, Cullen JM (1981) The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J Appl Ecol:957–966Google Scholar
  9. Cabrera AL (1974) Compositae. In: Burkart A. Fl Ilustr Entre Ríos 6, 106–540Google Scholar
  10. Cabrero J, Camacho JPM (2009) Cromosomas parásitos. Investigación y Ciencia, 41Google Scholar
  11. Camacho JPM, Parker J (1993) First B Chromosome Conference. Miraflores de la Sierra, MadridGoogle Scholar
  12. Camacho JPM, Sharbel TF, Beukeboom LW (2000) B-chromosome evolution. Philos Trans R Soc Lond B Biol Sci 355(1394):163–178PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chapman HM, Parh D, Oraguzie N (2000) Genetic structure and colonizing success of a clonal, weedy species, Pilosella officinarum (Asteraceae). Heredity 84(4):401–409PubMedCrossRefGoogle Scholar
  14. Coleman JR (1989) Embryology and cytogenetics of apomictic hexaploid Eupatorium odoratum L. (Compositae). Braz J Genet 12:803–817Google Scholar
  15. Coleman JR, Coleman MA (1984) Apomixis in two triploid Brazilian species of Eupatorium: E. bupleurifolium and E. callilepis. Braz J Genet 7:549–567Google Scholar
  16. Coleman JR, Coleman MA (1988) Embryology and cytogenetics of apomictic triploid Eupatorium squalidum DC. (Compositae). Braz J Genet 11:129–148Google Scholar
  17. Costas-Lippmann M (1979) Embryogeny of Cortaderia selloana and C. jubata (Gramineae). Botanical gazette:393–397Google Scholar
  18. de Nettancourt D, Grant WF (1964) Lacytogénétiquede Lotus (Leguminosae) III. Un cas de cytomixie dans un hybride interspécifi que. Cytologia 29:191–195CrossRefGoogle Scholar
  19. Dematteis M, Molero J, Ângulo MB, Rovira AM (2007) Chromosome studies on some Asteraceae from South America. Bot J Linn Soc 153:221–230CrossRefGoogle Scholar
  20. Drewitz JJ, DiTomaso JM (2004) Seed biology of jubatagrass (Cortaderia jubata). Weed Sci 52:525–530CrossRefGoogle Scholar
  21. Farco GE, Dematteis M (2011) Análisis mitótico de tres citotipos diferentes de Campuloclinium macrocephalum (Eupatorieae, Asteraceae). Bol Soc Argent 46(Suplemento):56Google Scholar
  22. Farco GE, Sosa MM, Dematteis M, Fernández A (2012) Cytology and embryology of the pompom weed, Campuloclinium macrocephalum (Eupatorieae, Asteraceae). S Afr J Bot 78:21–29CrossRefGoogle Scholar
  23. Fornasari L (1996) Ecology of old world hawkweeds, Hieracium species (Asteraceae), in their homeland and consideration on their potential weediness. In: Proceedings of the IX International Symposium on Biological Control of Weeds. University of Cape Town, Stellenbosch, p 11-18Google Scholar
  24. Freire SE (2008) Tribu Eupatorieae (Asteraceae). In: Zuloaga FO, Morrone O, Belgrano M (eds.) Catálogo de las Plantas Vasculares del Cono Sur de América del Sur: Argentina, Sur de Brasil (Paraná, Santa Catarina y Rio Grande do Sul), Chile, Paraguay y Uruguay. Monographs in Systematic Botany from the Missouri Botanical Garden 114, 1277–1302Google Scholar
  25. Galiano NG, Hunziker JH (1987) Estudios cariológicos en Compositae IV Vernonieae y Eupatorieae. Darwiniana 28:1–8Google Scholar
  26. Goodall J, Witkowski ETF, McConnachie AJ, Keen C (2012) Altered growth, population structure and realised niche of the weed Campuloclinium macrocephalum (Asteraceae) after exposure to the naturalised rust Puccinia eupatorii (Pucciniaceae). Biol Invasions 14(9):1947–1962CrossRefGoogle Scholar
  27. Halverson K, Heard SB, Nason JD, Stireman JO (2008) Origin, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50–58PubMedCrossRefGoogle Scholar
  28. Haroun SA (1995) Cytomixis in pollen mother cells of Polygonum tomentosum Schrank. Cytologia 60:257–260CrossRefGoogle Scholar
  29. Haroun SA, Al Shehri AM, Al Wadie HM (2004) Cytomixis in the microsporogénesis of Vicia faba L. (Fabaceae). Cytologia 69:7–11CrossRefGoogle Scholar
  30. Hodálová I, Grulich V, Horová L, Valachovič M, Marhold K (2007) Occurrence of tetraploid and octoploid cytotypes of Senecio jacobaea ssp. jacobaea (Asteraceae) in Pannonia and the Carpathians. Bot J Linn Soc 154:231–242CrossRefGoogle Scholar
  31. Holmgren I (1919) Zytologische studien uber die fortpflanzung bei den gattungen Erigeron und Eupatorium. Svenska Vetenskapsakademiens Årsbok 59:1–118Google Scholar
  32. Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. J Ecol 88:689–701CrossRefGoogle Scholar
  33. Jones RN (1995) B chromosomes in plants. New Phytologist 131:411–434CrossRefGoogle Scholar
  34. Kaur D, Singhal VK (2012) Phenomenon of cytomixis and intraspecific polyploidy (2x, 4x) in Spergularia diandra (Guss.) Heldr. & Sart. in the cold desert regions of Kinnaur district (Himachal Pradesh). Cytologia 77:163–171CrossRefGoogle Scholar
  35. Keeler KH, Davis GA (1999) Comparison of common cytotypes of Andropogon gerardii (Andropogoneae, Poaceae). Am J Bot 86:974–979PubMedCrossRefGoogle Scholar
  36. Khonglam A, Singh A (1980). Cytogenetic studies on the weed species of Eupatorium found in Meghalaya, India. Proceedings: Plant Sciences, 89(4), 237-241Google Scholar
  37. Khush GS (1973) Cytogenetics of aneuploids. Academic, New YorkGoogle Scholar
  38. Kumar G, Tripathi R (2008) Induced cytomictic variations through abiotic stresses in grasspea (Lathyrus sativus L.). Indian J Genet 68:58–64Google Scholar
  39. Kumar P, Singhal VK, Kaur D, Kaur S (2010) Cytomixis and associated meiotic abnormalities affecting pollen fertility in Clematis orientalis. Biol Plantarum 54(1):181–184CrossRefGoogle Scholar
  40. Levin DA (1975) Minority cytotypes exclusion in local plant populations. Taxon 24:35–43CrossRefGoogle Scholar
  41. Li XF, Song ZQ, Feng DS, Wang GH (2009) Cytomixis in Thinopyrum intermedium, Thinopyrum ponticum and its hybrids with wheat. Cereal Res Commun 37:353–361CrossRefGoogle Scholar
  42. Malallah GA, Attia TA (2003) Cytomixis and its possible evolutionary role in a Kuwaiti populations of Diplotaxis harra (Brassicaceae). Bot J Linn Soc 143:169–175CrossRefGoogle Scholar
  43. Mandal A, Datta AK (2012) Inter-and intra-plant variations in cytomictic behavior of chromosomes in Corchorus fascicularis Lamk. (Tiliaceae). Cytologia 77(2):269CrossRefGoogle Scholar
  44. Mandal A, Datta AK, Gupta S, Paul R, Saha A, Ghosh BK, Iqbal M (2013) Cytomixis—a unique phenomenon in animal and plant. Protoplasma 250(5):985–996Google Scholar
  45. Mantu DE, Sharma AK (1983) Cytomixis in pollen mother cells of an apomictic ornamental Ervatamia divaricata (Linn.) Alston. Cytologia 48:201–207CrossRefGoogle Scholar
  46. Marks GE (1954) An acetic-carmine glycerol jelly for use in pollen fertility counts. Stain Technol 29:277PubMedGoogle Scholar
  47. McConnachie AJ, Retief E, Henderson L, McKay F (2011) The initiation of a biological control programme against pompom weed, Campuloclinium macrocephalum (Less.) DC. (Asteraceae), in South Africa. Afr Entomol 19(2):258–268CrossRefGoogle Scholar
  48. Miljajev EL (1967) Cytochimiceskoje I electron–mikroskopi ceskoje izucenje mikosporogeneza Citrus sinensis. Autoreferat Kandidaatskej dizertacieGoogle Scholar
  49. Morisset P (1978) Cytomixis in the pollen mother cells of Ononis (Leguminosae). Can J Genet Cytol 20:383–388Google Scholar
  50. Nirmala A, Rao PN (1996) Genesis of chromosome numerical mosaicism in higher plants. Nucleus 39:15–175Google Scholar
  51. Noyes R (2007) Apomixis in the Asteraceae: diamonds in the rough. Functional Func Plant Sci Biotech 1(2):207–222Google Scholar
  52. Pritchard T (1960) Race formation in weedy species with special reference to Euphorbia cyparissias L. and Hypericum perforatum L. In: Biology of Weeds, Symp Brit Ecol Soc, p 61–66Google Scholar
  53. Richards AJ (1970) Eutriploid facultative agamospermy in Taraxacum. New Phytol 69(3):761–774CrossRefGoogle Scholar
  54. Rozenblum E, Maldonado S, Waisman CE (1988) Apomixis in Eupatorium tanacetifolium (Compositae). Am J Bot 75:311–322CrossRefGoogle Scholar
  55. Saggoo MIS, Gill A, Walia S (2011) Cytomixis during microsporogenesis in some populations of Croton bonplandianum of north India. Cytologia 76(1):67–72CrossRefGoogle Scholar
  56. Satina S, Blakeslee AF (1937) Chromosome behavior in triploids of Datura stramonium. I. The male gametophyte. Amer J Bot 24:518–527CrossRefGoogle Scholar
  57. Semyarkhina SYA, Kuptsou MS (1974) Cytomixis in various forms of sugarbeet. Vests I ANBSSE Ser Biyal 4:43–47Google Scholar
  58. Singh RN (1992) Chromosomal abnormalities and fertility in induced autotetraploid Helianthus annuus in the C1 and C2 generations. Cytologia 57:277–281CrossRefGoogle Scholar
  59. Singhal VK, Kaur D (2011) Cytomixis induced meiotic irregularities and pollen malformation in Clematis graveolens Lindley from the cold deserts of Kinnaur district of Himachal Pradesh (India). Cytologia 76(3):319–327CrossRefGoogle Scholar
  60. Singhal VK, Kumar P (2008) Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J Biosciences 33:371–380CrossRefGoogle Scholar
  61. Singhal VK, Gill BS, Dhaliwal RS (2007) Status of chromosomal diversity in the hardwood tree species of Punjab state. J Cytol Genet 8:67–83Google Scholar
  62. Singhal VK, Kaur S, Kumar P (2010) Aberrant male meiosis, pollen sterility and variable sized pollen grains in Clematis montana Buch.-Ham. ex DC. from Dalhousie hills, Himachal Pradesh. Cytologia 75:31–36CrossRefGoogle Scholar
  63. Sparvoli E (1960) Osservazioni cito-embriologiche in Eupatorium riparium. II. Megasporogenesi e sviluppo del gametofito femminile. Ann Bot 26:481–504Google Scholar
  64. Srivastava P, Kumar G (2011) EMS-induced cytomictic variability in safflower (Carthamus tinctorius L.). Cytol Genet 45(4):240–244CrossRefGoogle Scholar
  65. Suda J (1998) Taxonomická problematika rodu Oxycoccus v České republice se zvláštním zřetelem kúzemí Šumavy. Zpr Čes Bot Společ 32:189–195Google Scholar
  66. Suda J, Lysák MA (2001) A taxonomic study of the Vaccinium sect. Oxycoccus (Hill) W. D. J. Koch (Ericaceae) in the Czech Republic and adjacent territories. Folia Geobot 36:303–320CrossRefGoogle Scholar
  67. Takats ST (1959) Chromatin extrusion and DNA transfer during microsporogenesis. Chromosoma 10:430–453CrossRefGoogle Scholar
  68. Turner BL, Bacon J, Urbatsh L, Simpson B (1979) Chromosome numbers in South American compositae. Am J Bot 66:173–178CrossRefGoogle Scholar
  69. Van Dijk P, Bakx-Schotman T (1997) Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol Ecol 6:191–199Google Scholar
  70. Weiling F (1965) Light and electron microscopical observation on cytomixis and its possible relation topotocytosis. Planta 67:182–212CrossRefGoogle Scholar
  71. Zhen GS, Li XF (2009) Cytomixis in pollen mother cells of Salvia miltiorrhiza. Caryologia 62(3):213–219Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Instituto de Botánica del Nordeste (UNNE-CONICET)CorrientesArgentina

Personalised recommendations