Plant Systematics and Evolution

, Volume 300, Issue 7, pp 1749–1757 | Cite as

Taxonomical classification and origin of Kamut® wheat

  • Veronika Michalcová
  • Roman Dušinský
  • Miroslav Sabo
  • Maja Al Beyroutiová
  • Pavol Hauptvogel
  • Zuzana Ivaničová
  • Miroslav Švec
Original Article

Abstract

Bioagriculture and healthy lifestyle are trends of the twenty-first century. Bioagriculture involves the breeding of crops without using modern synthetic substances. Kamut brand wheat is one of the popular biocereals grown mainly in the USA and Europe. This cereal has the status of ancient wheat, not only because it has been grown since the era of the ancient Egyptian civilization, but also for its properties favorable for modern breeding programs and modern food marketing. In spite of Kamut’s® interesting history and stable place in the market, it is not a common subject of genetic studies. It is also interesting that it has not been successfully taxonomically classified yet. There are a few studies which classify this tetraploid wheat as Triticum polonicum L., T. turanicum Jakubz., T. turgidum L. and T. durum Desf. These studies are based on cytological and comparative methods. We chose molecular (transposable element resistance gene analog polymorphism, diversity arrays technology, sequencing of genes SBEIIa, and ψLpx-A1_like) and statistical methods to classify Kamut® wheat. According to our experiments we suggest that Kamut brand wheat originated as a natural hybrid between Triticum dicoccon conv. dicoccon and T. polonicum and is not original ancient Egyptian wheat. We suggest that Etruscan wheat has the same parents as Kamut®.

Keywords

Kamut® Molecular taxonomy Origin TERGAP DArT 

References

  1. Arlequin ver 3.5 http://cmpg.unibe.ch/software/arlequin3. Accessed 10 September 2013
  2. Benedetti S, Primiterra M, Tagliamonte MC, Carnevali A, Gianotti A, Bordoni A, Canestari F (2012) Counteraction of oxidative damage in the rat liver by an ancient grain. Nutrition 28(4):436–441PubMedCrossRefGoogle Scholar
  3. Brouwer W (1972) Handbuch des Speziellen Pflanzenbaues, Band 1. Weizen—Roggen—Gerste—Hafer—Mais. Paul Parey, BerlinGoogle Scholar
  4. Degnan JH, Salter LA (2005) Gene tree distributions under the coalescent process. Evolution 59(1):24–37PubMedCrossRefGoogle Scholar
  5. Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Flora of Cultivated Plants, vol 1. Kolos, p 346Google Scholar
  6. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  7. Fitzpatrick BM (2012) Estimating ancestry and heterozygosity of hybrids using molecular markers. BMC Evolut Biol 12:131. doi:10.1186/1471-2148-12-131
  8. Gowayed S (2009) Egyptian wheat. Dissertation, University of KasselGoogle Scholar
  9. Grausgruber H, Sailer C, Ruckenbauer P (2004) Khorasan wheat, Kamut® and ‘Pharaonenkorn’: origin, characteristics and potential. Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 55:75–80Google Scholar
  10. Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers—a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47:497–505CrossRefGoogle Scholar
  11. Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and xTriticosecale Wittm. Genet Resour Crop Evol 58:3–10CrossRefGoogle Scholar
  12. Khlestkina EK, Röder MS, Grausgruber H, Börner A (2006) A DNA fingerprinting-based taxonomic allocation of Kamut wheat. Plant Genet Resour Charact Util 4(3):172–180CrossRefGoogle Scholar
  13. Kokindova M, Kraic J (2003) DNA polymorfizmus pšeníc druhu Triticum turgidum L. (article in slovak). Nova Biotechnolica 3(1):52–62Google Scholar
  14. Kubatko LS, Carstens BC, Knowles LL (2009) STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 25(7):971–973PubMedCrossRefGoogle Scholar
  15. Kuckuck H (1959) Neuere Arbeiten zur Entstehung der hexaploiden Kulturweizen. Z Pflanzenzüchtg 41:205–226Google Scholar
  16. Kuckuck H (1970) Primitive wheats. In: Frankel OH, Bennet E (eds) Genetic resources in plants, their exploration and conservation. IBP Handbooks no. 11, pp 249–266Google Scholar
  17. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org
  18. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCentralPubMedCrossRefGoogle Scholar
  19. Percival J (1921) The wheat plant. A monograph. Duckworth & Co., LondonCrossRefGoogle Scholar
  20. Quinn RM (1999) Kamut®: ancient grain, New Cereal. ASHS Press, Alexandria, pp 182–183Google Scholar
  21. Rodríguez-Quijano M, Lucas R, Ruiz M, Giraldo P, Espí A, Carrillo JM (2010) Allelic variation and geographical patterns of prolamins in the USDA-ARS Khorasan wheat germplasm collection. Crop Sci 50:2383–2391Google Scholar
  22. Simonato B, Pasini G, Giannattasio M, Curioni A (2002) Allergenic potential of Kamut® wheat. Allergy 57:653–654PubMedGoogle Scholar
  23. Szabó AT, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, Proceedings of the First International Workshop on Hulled Wheats, Castelvecchio Pascoli, Tuscany, ItalyGoogle Scholar
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  25. Triticarte™ whole-genome genotyping service for wheat and barley http://www.triticarte.com.au/. Accessed 20 November 2013
  26. Vavilov NI (1951) The origin, variation, imunity and breeding of cultivated plants. Chronica Botanica 13. Chronica Botanica Co., WalthamGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Veronika Michalcová
    • 1
  • Roman Dušinský
    • 1
  • Miroslav Sabo
    • 2
  • Maja Al Beyroutiová
    • 1
  • Pavol Hauptvogel
    • 3
  • Zuzana Ivaničová
    • 4
  • Miroslav Švec
    • 1
  1. 1.Department of Genetics, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  2. 2.Department of Mathematics and Constructive Geometry, Faculty of Civil EngineeringSlovak University of Technology in BratislavaBratislavaSlovakia
  3. 3.Research Institute of Plant ProductionPiešťanySlovakia
  4. 4.Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany AS CR, v. v. i.Olomouc, HoliceCzech Republic

Personalised recommendations