Ovule ontogeny in Billbergia nutans in the evolutionary context of Bromeliaceae (Poales)

  • 349 Accesses

  • 3 Citations


The infrasubfamilial relations within Bromeliaceae are still not fully understood, especially in Bromelioideae. Billbergia nutans (Bromelioideae) is one of the most widely cultivated bromeliads. This study aims to characterise ovule ontogeny in B. nutans and to review the literature concerning ovules at a family level, to verify useful data for taxonomy and identify the evolutionary scenario of embryological characters within the family. Novel data are recorded for the genus. The ovules of Bromeliaceae are anatropous, bitegmic and crassinucellate, with trizonate ovule primordia, a monosporic development, a linear type of tetrad, callosic cell walls during meiosis, a functional chalazal gynospore, a Polygonum-type gametophyte, the presence of a hypostase, and a dermal origin of the integuments. In B. nutans, the chalazal appendage morphology shows intraspecific variability and might thus not be an appropriate character for taxonomic use. This is the first report on the three-dimensional reconstruction of the female gametophyte of a monocotyledon. Many useful characters are suggested for the taxonomy of Bromeliaceae. The evolutionary scenario of the ovule in the family indicates that the earliest-divergent subfamily, Brocchinioideae, possesses a reduced state of several characters. Among the family, some characters appear homoplasious and might be relevant when applied to lower taxonomic levels. The two-layered integuments and the small number of ovules per carpel are probably plesiomorphic states in Poales.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Almeida VR, Costa AF, Mantovani A, Gonçalves-Esteves V, Arruda RCO, Forzza RC (2009) Morphological phylogenetics of Quesnelia (Bromeliaceae, Bromelioideae). Syst Bot 34:660–672

  2. Asplund I (1972) Embryological studies in the genus Typha. Svensk Bot Tidskr 66:1–17

  3. Asplund I (1973) Embryological studies in the genus Sparganium. Svensk Bot Tidskr 67:177–200

  4. Barfuss MHJ, Samuel R, Till W, Stuessy TF (2005) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am J Bot 92:337–351

  5. Billings FH (1904) A study of Tillandsia usneoides. Bot Gaz 38:99–121

  6. Brown GK, Terry RG (1992) Petal appendages in Bromeliaceae. Am J Bot 79:1051–1071

  7. Chamberlain CJ (1932) Methods in plant histology, 5th edn. University of Chicago Press, Chicago

  8. Conceição S, De Toni KLG, Costa CG (2007) Particularidades do nucelo de Dyckia pseudococcinea L. B. Smith (Bromeliaceae). Rev Bras Bioscienc 5:846–848

  9. De Toni KLG, Mariath JEA (2008) Ovule ontogeny in Rubiaceae (Juss.): Chomelia obtusa (Cinchonoideae–Guettardeae) and Ixora coccinea (Ixoroideae–Ixoreae). Plant Syst Evol 272:39–48

  10. De Toni KLG, Mariath JEA (2010) Ovule ontogeny of Relbunium species in the evolutionary context of Rubiaceae. Aust J Bot 58:70–79

  11. Downs RJ (1974) Anatomy and physiology. In: Smith LB, Downs RJ (eds) Pitcairnioideae (Bromeliaceae), Flora Neotropica Monograph 14(1). Hafner Press, New York, pp 3–28

  12. Endress PK (2011) Angiosperm ovules: diversity, development, evolution. Ann Bot 107:1465–1489

  13. Fagundes NF, Mariath JEA (2010) Morphoanatomy and ontogeny of fruit in Bromeliaceae species. Acta Bot Bras 24:765–779

  14. Faria APG, Wendt T, Brown GK (2004) Cladistic relationships of Aechmea (Bromeliaceae, Bromelioideae) and allied genera. Ann Missouri Bot Gard 91:303–319

  15. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

  16. Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–340

  17. Gabriel BL (1982) Biological electron microscopy. Van Nostrand Reinhold Company, New York

  18. Gerrits PO, Smid L (1983) A new less toxic polymerization system for the embedding of soft tissue in glycol methacrylate and subsequent preparing of serial sections. J Microsc 132:81–85

  19. Gersterberger P, Leins P (1978) Rasterelektronmikroskopische Untersuchungen an Blütenknospen von Physalis philadelphica (Solanaceae). Anwendung einer neuen Präparationsmethode. Ber Deutsch Bot Ges 91:381–387

  20. Givnish TJ, Millam KC, Evans TM, Hall JC, Pires JC, Berry PE, Sytsma KJ (2004) Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. Int J Plant Sci 165:S35–S54

  21. Givnish TJ, Millam KC, Berry PE, Systma KJ (2007) Phylogeny, adaptive radiation and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23:3–26

  22. Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, dePamphilis CW, Graham SW, Pires JC, Stevenson DW, Zomlefer WB, Briggs BG, Duvall MR, Moore MJ, Heaney JM, Soltis DE, Soltis PS, Thiele K, Leebens-Mack JH (2010) Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of Poales. Ann Missouri Bot Gard 97:584–616

  23. Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma K (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895

  24. Herr JM (1984) Embryology and taxonomy. In: Johri BM (ed) Embryology of angiosperms. Springer-Verlag, Berlin, pp 647–696

  25. Huang BQ, Russell SD (1992) Female germ unit: organization, isolation and function. In: Russel SD, Dumas C (eds) Sexual reproduction in flowering plants. Academic Press Inc, San Diego, pp 233–293

  26. Hughes J, McCully ME (1975) The use of an optical brightener in the study of plant structure. Stain Technol 50:319–329

  27. Jane WN, Chiang SHT (1996) Ultrastructure of megasporogenesis and early megagametogenesis in Arundo formosana Hack. (Poaceae). Int J Plant Sci 157:418–431

  28. Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

  29. Lakshmanan KK (1967) Embryological studies in the Bromeliaceae. I. Lindmania penduliflora (C. H. Wright) Stapf. Proc Ind Acad Sci 65:49–55

  30. Lersten N (2004) Flowering plant embryology. Blackwell Publishing, Iowa

  31. Linder HP, Rudall PJ (2005) Evolutionary history of Poales. Annu Rev Ecol Evol Syst 36:107–124

  32. Luther HE (2008) An alphabetical list of bromeliad binomials, 11th edn. The Bromeliad Society International, Sarasota

  33. Madrid EN, Friedman WE (2008) Female gametophyte development in Aristolochia labiata Willd. (Aristolochiaceae). Bot J Linn Soc 158:19–29

  34. Madrid EN, Friedman WE (2009) The developmental basis of an evolutionary diversification of female gametophyte structure in Piper and Piperaceae. Ann Bot 103:869–884

  35. Madrid EN, Friedman WE (2010) Female gametophyte and early seed development in Peperomia (Piperaceae). Am J Bot 97:1–14

  36. Magalhães RI, Mariath JEA (2012) Seed morphoanatomy and its systematic relevance to Tillandsioideae (Bromeliaceae). Plant Syst Evol 298:1881–1895

  37. Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

  38. McDowell EM, Trump BR (1976) Histological fixatives for diagnostic light and electron microscopy. Arch Pathol Lab Med 1000:405–414

  39. McWilliams EL (1968) The subgenus Billbergia in cultivation. J Bromel Soc 18:7–16

  40. Mendes SP (2008) Endospermogênese e embriogênese de Dyckia pseudococcinea L. B. Smith (Bromeliaceae). Dissertation. Federal University of Rio de Janeiro, Rio de Janeiro

  41. Mendes SP (2012) Estudos embriológicos em Pitcairnia encholirioides L.B.Sm. (Pitcairnioideae – Bromeliaceae). PhD Thesis. Federal University of Rio de Janeiro, Rio de Janeiro

  42. Oriani A, Scatena VL (2013) The taxonomic value of floral characters in Rapateaceae (Poales-Monocotyledons). Plant Syst Evol 299:291–303

  43. Oriani A, Stützel T, Scatena VL (2012) Contributions to the floral anatomy of Juncaceae (Poales––Monocotyledons). Flora 207:334–340

  44. Palací CA, Brown GK, Tuthill DE (2004) The seeds of Catopsis (Bromeliaceae: Tillandsioideae). Syst Bot 29:518–527

  45. Papini A, Mosti S, Milocani E, Tani G, Di Falco P, Brighigna L (2011) Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae). Protoplasma 248:651–662

  46. Plachno BJ, Swiatek P (2009) Functional anatomy of the ovule in Genlisea with remarks on ovule evolution in Lentibulariaceae. Protoplasma 236:39–48

  47. Rao AN, Wee YC (1979) Embryology of the pineapple, Ananas comosus (L.) Merr. New Phytol 83:485–497

  48. Rodkiewicz B (1970) Callose in cell walls during megasporogenesis in angiosperms. Planta 93:39–47

  49. Sajo MG, Prychid CJ, Rudall PJ (2004) Structure and development of the ovule in Bromeliaceae. Kew Bull 59:261–267

  50. Sartori JS (2008) Desenvolvimento floral em Vriesea carinata Wawra (Tillandsioideae––Bromeliaceae). PhD Thesis. Federal University of Rio Grande do Sul, Rio Grande do Sul

  51. Sass C, Specht CD (2010) Phylogenetic estimation of the core bromelioids with an emphasis on the genus Aechmea (Bromeliaceae). Mol Phylogenet Evol 55:559–571

  52. Schulte K, Barfuss MHJ, Zizka G (2009) Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Mol Phylogenet Evol 51:327–339

  53. Smith LB, Downs RJ (1974) Pitcairnioideae (Bromeliaceae). In: Smith LB, Downs RJ (eds) Flora neotropica monograph 14(1). Hafner Press, New York, pp 1–662

  54. Smith MM, McCully ME (1978) A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma 95:229–254

  55. Spat C (2012) Embriologia de Tillandsia aeranthos (Lois.) L. B. Sm. (Tillandsioideae-Bromeliaceae). Dissertation. Federal University of Santa Maria, Rio Grande do Sul

  56. Takhtajan A (1972) Patterns of ontogenetic alterations in the evolution of higher plants. Phytomorphology 22:164–171

  57. Tobe H (1989) The embryology of angiosperms: Its broad application to the systematic and evolutionary study. Bot Mag Tokyo 102:351–367

  58. Venturelli M, Bouman F (1988) Development of ovule and seed in Rapateaceae. Bot J Linn Soc 97:267–294

  59. Vervaeke I, Parton E, Deroose R, De Proft MP (2003) Flower biology of six cultivars of the Bromeliaceae. I. Pollen, pistil, and petal appendages. Selbyana 24:78–86

  60. Wang Z, Ren Y (2007) Ovule morphogenesis in Ranunculaceae and its systematic significance. Ann Bot 101:447–462

  61. Wee YC, Rao AN (1974) Gametophytes and seed development in pineapple. Curr Sci 43:171–173

  62. Willemse MTM, Bednara J (1979) Polarity during megasporogenesis in Gasteria verrucosa. Phytomorphology 29:156–165

  63. Willemse MTM, van Went JL (1984) The female gametophyte. In: Johri BM (ed) Embryology of the angiosperms. Springer-Verlag, Berlin, pp 159–196

  64. Zhukova GYa (2002) Egg cell. In: Batygina TB (ed) Embryology of flowering plants, terminology and concepts, Generative organs of flower, vol 1. Science Publishers Inc, Enfield, pp 149–152

Download references


We thank the Laboratório de Anatomia Vegetal at the Universidade Federal do Rio Grande do Sul (UFRGS) for technical support; CAPES, for granting a doctoral fellowship to the first author; CNPq, for a research grant to the second author; FAPERGS/CNPq for the grant given via PRONEX; the Fundação Zoobotânica do Rio Grande do Sul and Jardim Botânico de Porto Alegre, for permission to collect samples from the Bromeliaceae Collection and our colleagues Ms. Márcia Goetze and Dr. Camila Zanella for help in collecting the material.

Author information

Correspondence to Jorge Ernesto de Araujo Mariath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The video shows the mature female gametophyte of Billbergia nutans reconstructed in three dimensions, viewed from all angles. (MPG 4327 kb)

The video shows the mature female gametophyte of Billbergia nutans reconstructed in three dimensions, viewed from all angles. (MPG 4327 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fagundes, N.F., de Araujo Mariath, J.E. Ovule ontogeny in Billbergia nutans in the evolutionary context of Bromeliaceae (Poales). Plant Syst Evol 300, 1323–1336 (2014) doi:10.1007/s00606-013-0964-x

Download citation


  • Bromeliaceae
  • Development
  • Embryology
  • Female gametophyte
  • Three-dimensional reconstruction
  • Ovule