Plant Systematics and Evolution

, Volume 300, Issue 6, pp 1285–1297 | Cite as

Floral ontogeny in Passiflora lobata (Malpighiales, Passifloraceae) reveals a rare pattern in petal formation and provides new evidence for interpretation of the tendril and corona

Original Article

Abstract

Passiflora lobata differs from most other passion flowers in that it has a tetramerous gynoecium and dorsiventral flowers. A detailed ontogenetic analysis using scanning electron microscopy revealed the following characters: tendril formation starts late, indicating an axial nature. The paired flowers show mirror symmetry, which is manifested very early in ontogeny. Five sepals initiate in a spiral followed by five petals, which are formed successively adjacent to each other. This is a rare pattern and the first report in Passifloraceae. Frequently a sixth petal primordium was found, which never develops and which could be interpreted as the first outgrowth or frill of the corona (which therefore might be interpreted as derived from the perianth). The abaxial carpel forms always in front of the first-formed sepal. The remaining three carpels are alternate with the stamens. This means that a positional change took place from the typical trimerous ovary with two carpels in front of stamens to only one antestaminal carpel in P. lobata. This shift might have opened up space for a fourth carpel. Together with the analysis of other tetramerous Passifloraceae, this study will foster the understanding of flower morphology in this family and its systematic relationships among Malpighiales.

Keywords

Corona Floral ontogeny Inflorescence Malpighiales Tendril Passifloraceae Passiflora Tetrastylis 

References

  1. APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  2. Bell AD (2008) Plant form. An illustrated guide to flowering plant morphology, 2nd edn. Timber Press, LondonGoogle Scholar
  3. Bello MA, Hawkins JA, Rudall PJ (2007) Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Ann Bot 100:1491–1505PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bernhard A (1999) Flower structure, development, and systematics in Passifloraceae and in Abatia (Flacourtiaceae). Int J Plant Sci 160:135–150CrossRefGoogle Scholar
  5. Buzato S, Franco ALM (1992) Tetrastylis ovalis: a second case of bat pollinated passionflower (Passifloraceae). Plant Syst Evol 181:261–267CrossRefGoogle Scholar
  6. Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501PubMedCentralPubMedCrossRefGoogle Scholar
  7. Cardoso MZ (2008) Herbivore handling of a plant’s trichome: the case of Heliconius chrithonia (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae). Neotrop Entomol 37:247–252PubMedCrossRefGoogle Scholar
  8. Caze ALR, Mäder G, Bonatto SL, Freitas LB (2013) A molecular systematic analysis of Passiflora ovalis and Passiflora contracta (Passifloraceae). Phytotaxa 132:39–46CrossRefGoogle Scholar
  9. De Candolle AP (1813) Théorie élémentaire de la botanique. ParisGoogle Scholar
  10. De Wilde WJJO (1974) The genera of tribe Passifloreae (Passifloraceae) with special reference to flower morphology. Blumea 22:37–50Google Scholar
  11. Drinnan A, Carrucan A (2005) The ontogenetic basis for floral diversity in Agonis, Leptospermum and Kunzea (Myrtaceae). Plant Syst Evol 251:71–88CrossRefGoogle Scholar
  12. Eichler AW (1878) Blüthendiagramme. 2. Teil. W. Engelmann, LeipzigGoogle Scholar
  13. Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  14. Endress PK (1999) Symmetry in flowers: diversity and evolution. Int J Plant Sci 160:S3–S23PubMedCrossRefGoogle Scholar
  15. Endress PK, Matthews ML (2006) Elaborate petals and staminodes in eudicots: diversity, function and evolution. Org Div Evol 6:257–293CrossRefGoogle Scholar
  16. Endress PK, Davis CC, Matthews ML (2013) Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants. Ann Bot 111:969–985PubMedCentralPubMedCrossRefGoogle Scholar
  17. Feuillet C (2011) Two new species of Dilkea subgenus Dilkea (Passifloraceae) from Loreto, Peru. PhytoKeys 2:1–8PubMedGoogle Scholar
  18. Feuillet C, MacDougal JM (2004) A new infrageneric classification of Passiflora L. (Passifloraceae). Passiflora 13:34–38Google Scholar
  19. Feuillet C, MacDougal JM (2007) Passifloraceae. In: Kubizki K (ed) The families and genera of vascular plants. Springer, Berlin, pp 270–281Google Scholar
  20. Gentry AH (1976) Additional Panamanian Passifloraceae. Ann Missouri Bot Gard 63:341–345CrossRefGoogle Scholar
  21. Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK (2006) Phylogenetic relationships and chromosome number evolution in Passiflora. Syst Bot 31:138–150CrossRefGoogle Scholar
  22. Harms H (1893) Passifloraceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien. W. Engelmann, Leipzig, pp 69–94Google Scholar
  23. Harms H (1897) Zur Morphologie der Ranken und Blütenstände bei den Passifloraceen. Bot Jahrb 24:163–178Google Scholar
  24. Harms H (1931) Eine neue Gattung der Flacourtiaceae. Notizbl königl bot Gart Berlin 11:146–149CrossRefGoogle Scholar
  25. Harms H (1932) Zur Kenntnis der Gattung Ancistrothyrsus. Notizbl königl bot Gart Berlin 11:598–600CrossRefGoogle Scholar
  26. Hemingway CA, Christensen AR, Malcomber ST (2011) B- and C-class gene expression during corona development of the blue passionflower (Passiflora caerulea, Passifloraceae). Am J Bot 98:923–934PubMedCrossRefGoogle Scholar
  27. Hofmeister W (1868) Allgemeine Morphologie der Gewächse. W. Engelmann, LeipzigGoogle Scholar
  28. Killip EP (1926) Tetrastylis, a genus of Passifloraceae. J Wash Acad Sci 16:365–369Google Scholar
  29. Killip EP (1938) The American species of Passifloraceae. Bot Ser Field Mus Nat Hist 19:1–613Google Scholar
  30. Kirchoff BK (2003) Shape matters: Hofmeister’s rule, primordium shape, and flower orientation. Int J Plant Sci 164:505–517CrossRefGoogle Scholar
  31. Krosnick SE, Freudenstein JV (2005) Monophyly and floral character homology of old world Passiflora (subgenus Decaloba: supersection Disemma). Syst Bot 30:139–152CrossRefGoogle Scholar
  32. Krosnick SE, Harris EM, Freudenstein JV (2006) Patterns of anomalous floral development in the Asian Passiflora (subgenus Decaloba: supersection Disemma). Am J Bot 93:620–636PubMedCrossRefGoogle Scholar
  33. Krosnick SE, Ford AJ, Freudenstein JV (2009) Taxonomic revision of Passiflora subgenus Tetrapathea including the monotypic genera Hollrungia and Tetrapathea (Passifloraceae), and a new species of Passiflora. Syst Bot 34:375–385CrossRefGoogle Scholar
  34. Krosnick SE, Porter-Utley KE, Macdougal JM, Jorgensen PM, McDade LA (2013) New insights into the evolution of Passiflora subgenus Decaloba (Passifloraceae): phylogenetic relationships and morphological synapomorphies. Syst Bot 38:692–713CrossRefGoogle Scholar
  35. Levin DA (1973) The role of trichomes in plant defense. Quart Rev Biol 48:3–15CrossRefGoogle Scholar
  36. Lindman CAM (1906) Zur Kenntnis der Corona einiger Passifloren. Botaniska Studier, tellägnade F.R. Kjellman den 4 November 1906. Almquist & Wiksells Boktryckerei-A.-B., UppsalaGoogle Scholar
  37. MacDougal JM (1986) A new combination in Passifloraceae. Phytologia 60:446Google Scholar
  38. MacDougal JM (1994) Revision of Passiflora subgenus Decaloba section Pseudodysosmia (Passifloraceae). Syst Bot Monogr 41:1–446CrossRefGoogle Scholar
  39. Masters MT (1869) Vegetable teratology. Ray Society, LondonGoogle Scholar
  40. Masters MT (1871) Contribution to the natural history of the Passifloraceae. Trans Linn Soc Lond Bot 27:593–645CrossRefGoogle Scholar
  41. Muschner VC, Lorenz AP, Cervi AC, Bonatto SL, Souza-Chies TT, Salzano FM, Freitas LB (2003) A first molecular phylogenetic analysis of Passiflora (Passifloraceae). Am J Bot 90:1229–1238PubMedCrossRefGoogle Scholar
  42. Payer J-B (1857) Traité d’organogénie comparée de la fleur. Victor Masson, ParisGoogle Scholar
  43. Prenner G, Klitgaard BB (2008) Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Am J Bot 95:1349–1365PubMedCrossRefGoogle Scholar
  44. Prenner G, Deutsch G, Harvey P (2002) Floral developmet and morphology in Cuscuta reflexa Roxb. (Convolvulaceae). Stapfia 80:311–322Google Scholar
  45. Prenner G, Vergara-Silva F, Rudall PJ (2009) The key role of morphology in modelling inflorescence architecture. Trends Plant Sci 14:302–309PubMedCrossRefGoogle Scholar
  46. Prenner G, Bateman RM, Rudall PJ (2010) Floral formulae updated for routine inclusion in formal taxonomic descriptions. Taxon 59:241–250Google Scholar
  47. Puri V (1948) Studies in floral anatomy, V. On the structure and nature of the corona in certain species of the Passifloraceae. J Indian Bot Soc 27:130–149Google Scholar
  48. Ronse De Craene LP (2010) Floral diagrams. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Sajo G, de Mello-Silva R, Rudall PJ (2010) Homologies of floral structures in Velloziaceae with particular reference to the corona. Int J Plant Sci 171:595–606CrossRefGoogle Scholar
  50. Sazima M, Buzato S, Sazima I (1999) Bat-pollinated flower assemblages and bat visitors at two Atlantic forest sites in Brazil. Ann Bot 83:705–712CrossRefGoogle Scholar
  51. Schleiden JM (1849) Principles of scientific botany. Longman, Brown, Green and Longmans, LondonGoogle Scholar
  52. Schönenberger J, Grenhagen A (2005) Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Syst Evol 254:233–249CrossRefGoogle Scholar
  53. Schwabe WW, Clewer AG (1984) Phyllotaxis—a simple computer model based on the theory of a polarly-translocated inhibitor. J Theor Biol 109:595–619CrossRefGoogle Scholar
  54. Shah JJ, Dave YS (1970) Tendrils of Passiflora foetida: histogenesis and morphology. Am J Bot 57:786–793CrossRefGoogle Scholar
  55. Snow N, MacDougal JM (1993) New chromosome reports in Passiflora (Passifloraceae). Syst Bot 18:261–273CrossRefGoogle Scholar
  56. Thury M (1897) Observations sur la morphologie et l’organogénie florales des Passiflores. Bull Herb Boissier 5:494–503Google Scholar
  57. Tokuoka T (2012) Molecular phylogenetic analysis of Passifloraceae sensu lato (Malpighiales) based on plastid and nuclear DNA sequences. J Plant Res 125:489–497PubMedCrossRefGoogle Scholar
  58. Traas J (2013) Phyllotaxis. Development 140:249–253PubMedCrossRefGoogle Scholar
  59. Vitta FA, Bernacci LC (2004) A new species of Passiflora in section Tetrastylis (Passifloraceae) and two overlooked species of Passiflora from Brazil. Brittonia 56:89–95CrossRefGoogle Scholar
  60. von Mohl H (1827) Über den Bau und das Winden der Ranken und Schlingpflanzen. Heinrich Laupp, TübingenCrossRefGoogle Scholar
  61. Waters MT, Tiley AMM, Kramer EM, Meerow AW, Langdale JA, Scotland RW (2013) The corona of the daffodil Narcissus bulbocodium shares stamen-like identity and is distinct from the orthodox floral whorls. Plant J 74:615–625PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Jodrell LaboratoryRoyal Botanic Gardens, KewSurreyUK

Personalised recommendations