Plant Systematics and Evolution

, Volume 300, Issue 5, pp 1051–1070 | Cite as

Phylogeny of New World Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers

  • María A. Scataglini
  • Fernando O. Zuloaga
  • Liliana M. Giussani
  • Silvia S. Denham
  • Osvaldo Morrone
Original Article

Abstract

Phylogenetic analyses of 131 terminals of Paspalum and related genera, based on both plastid and nuclear markers, were performed under maximum parsimony and Bayesian methods. The total evidence analyses generated a hypothesis showing that Paspalum would be monophyletic if Spheneria, Thrasyopsis and Reimarochloa are included within the genus. Paspalum inaequivalve and P. microstachyum, two species of the Inaequivalvia group were related to genus Anthaenantiopsis, excluded from Paspalum, or nested within it by plastid and nuclear markers, respectively. Subgenera Anachyris and Harpostachys were partially recovered as monophyletic assemblages, while subg. Ceresia and Paspalum resolved as polyphyletic. Within subgenus Paspalum, some informal groups were recovered as monophyletic, while others were resolved as paraphyletic or polyphyletic. Phylogenetic relationships among species of Paspalum were partially recovered possibly due to reticulation events among species, autopolyploidization and apomixis; all these processes being common in Paspalum, thus obscuring the infrageneric classification.

Keywords

Paspalum Panicoideae Poaceae Phylogeny Classification 

References

  1. Adamowski E, Pagliarini MS, Mendes Bonato A, Rocha Batista LA, Valls JF (2005) Chromosome numbers and meiotic behavior of some Paspalum accessions. Genet Mol Biol 28:773–780CrossRefGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Aut Control 19:716–723CrossRefGoogle Scholar
  3. Aliscioni SS (2002) Contribución a la filogenia del género Paspalum (Poaceae: Panicoideae: Paniceae). Ann Missouri Bot Gard 89:504–523CrossRefGoogle Scholar
  4. Aliscioni SS, Denham SS (2008) Rachis of the genus Paspalum L. (Poaceae: Panicoideae: Paniceae): anatomy and taxonomic significance of the primary branches of the inflorescences. Flora 203:60–76CrossRefGoogle Scholar
  5. Aliscioni SS, Denham SS (2009) Atypical foliar anatomy related to Kranz syndrome in Paspalum inaequivalve and Paspalum microstachyum (Poaceae: Panicoideae: Paniceae). Flora 204:718–729CrossRefGoogle Scholar
  6. Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA (2003) A molecular phylogeny of Panicum (Poaceae: Paniceae). Tests of monophyly and phylogenetic placement within the Panicoideae. Amer J Bot 90:796–821CrossRefGoogle Scholar
  7. Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacers (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molec Phylogen Evol 10:449–463CrossRefGoogle Scholar
  8. Barreto IL (1954) Las especies afines a Paspalum virgatum en la América del Sur. Revista Argent Agron 21:125–142Google Scholar
  9. Brown WV (1977) The Kranz syndrome and its types in grass systematics. Mem Torrey Bot Club 23:1–97Google Scholar
  10. Burman AG (1980) Notes on genera Thrasya H. B. K. and Thrasyopsis Parodi (Paniceae: Gramineae). Brittonia 32:217–221CrossRefGoogle Scholar
  11. Burman AG (1985) [1987] The genus Thrasya H. B. K. (Gramineae). Acta Bot Venez 14:7–89Google Scholar
  12. Canto-Dorow TS, Valls JF, Longhi-Wagner HM (1996) Revisão taxonomica das espécies de Paspalum L. grupo Notata (Poaceae: Paniceae) do Rio Grande do Sul, Brasil. Iheringia, Bot 47:3–44Google Scholar
  13. Caponio I, Quarín CL (1987) El sistema genético de Paspalum simplex y de un híbrido interespecífico con P. dilatatum. Kurtziana 19:35–45Google Scholar
  14. Chase A (1927) Paspalum. In: Hitchcock AS (ed) The grasses of Ecuador, Peru, and Bolivia, vol 24. Government Printing Office, Washington DC, pp 434–555Google Scholar
  15. Chase A (1929) The North American species of Paspalum. Contr US Natl Herb 28:1–310Google Scholar
  16. Chase A (1939) Unpublished manuscript. Paspalum of South America. Hitchcock and Chase Library, Botany Department, Smithsonian Institution, Washington DCGoogle Scholar
  17. Clark LG, Zhang W, Wendell FJ (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460CrossRefGoogle Scholar
  18. Clayton WD, Renvoize SA (1986) Genera Graminum: grasses of the world. Kew Bull Addit Ser 13:256–285Google Scholar
  19. Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, LondonGoogle Scholar
  20. Davidse G, Pohl RW (1974) Chromosome numbers, meiotic behavior and notes on tropical American grasses. Canad J Bot 52:317–328CrossRefGoogle Scholar
  21. de Wet JM, Harlan JR (1970) Apomixis, polyploidy and speciation in Dichanthium. Evolution 24:270–277CrossRefGoogle Scholar
  22. Denham SS (2005) Revisión sistemática del subgénero Harpostachys de Paspalum (Poaceae:Panicoideae:Paniceae). Ann Missouri Bot Gard 92:463–532Google Scholar
  23. Denham SS, Zuloaga FO (2007) Phylogenetic relationships of the Decumbentes group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae). Aliso 23:545–562CrossRefGoogle Scholar
  24. Denham SS, Zuloaga FO, Morrone O (2002) Revision and phylogeny of Paspalum subgenus Ceresia (Poaceae: panicoideae: Paniceae). Ann Missouri Bot Gard 89:337–399CrossRefGoogle Scholar
  25. Denham SS, Morrone O, Zuloaga FO (2010) Estudios en el género Paspalum (Poaceae, Panicoideae, Paniceae). Paspalum denticulatum y especies afines. Ann Missouri Bot Gard 97:11–33CrossRefGoogle Scholar
  26. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Amer 19:11–15Google Scholar
  27. Duvall MR, Noll JD, Minn AH (2001) Phylogenetics of Paniceae (Poaceae). Amer J Bot 88:1988–1992CrossRefGoogle Scholar
  28. Essi L, Souza-Chies TT (2007) Phylogeny of Linearia and Notata groups of Paspalum L. (Poaceae: panicoideae: Paniceae) and related species. Genet Resources Crop Evol 54:779–791CrossRefGoogle Scholar
  29. Filgueiras TS, Davidse G (1994) Paspalum biaristatum (Poaceae: Paniceae), a new serpentine endemic from Goiás, Brazil, and the second awned species in the genus. Novon 4:18–22CrossRefGoogle Scholar
  30. Forbes I Jr, Burton GW (1961) Cytology of diploids, natural and induced tetraploids and intraspecies hybrids of bahiagrass Paspalum notatum Flüggé. Crop Sci 1:402–406CrossRefGoogle Scholar
  31. Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Amer J Bot 88:1993–2012CrossRefGoogle Scholar
  32. Giussani LM, Zuloaga FO, Quarín CL, Cota-Sánchez JH, Ubayasena K, Morrone O (2009) Phylogenetic relationships in the genus Paspalum (Poaceae: Panicoideae: Paniceae): an assessment of the Quadrifaria and Virgata informal groups. Syst Bot 34:32–43CrossRefGoogle Scholar
  33. Goloboff PA, Farris JS, Källersjö M, Oxelman B, Ramírez MJ, Szumik CA (2003) Improvements to resampling measures of group support. Cladistics 19:324–332CrossRefGoogle Scholar
  34. Goloboff PA, Farris JS, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  35. Gómez-Martínez R, Culham A (2000) Phylogeny of the subfamily Panicoideae with emphasis on the tribe Paniceae: evidence from the trnL-F cpDNA region. In: Jacobs SWL, Everett JE (eds) Grasses: systematics and evolution Australia. Collingwood Commonwealth Scientific and Industrial Research Organization (CSIRO) Publishing, Victoria, pp 136–140Google Scholar
  36. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  37. Hattersley PW, Watson L (1976) C4 grasses: an anatomical criterion for distinguishing between NADPmalic enzyme species and PCK or NAD-malic enzyme species. Austral J Bot 24:297–308CrossRefGoogle Scholar
  38. Hojsgaard DA, Honfi I, Rua GH, Daviña J (2009) Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). Genet Resources Crop Evol 56:533–545CrossRefGoogle Scholar
  39. Honfi AI (2003) Citoembriología de poliploides impares en el género Paspalum (Panicoideae: Gramineae). Tesis doctoral. Argentina, Córdoba: Universidad Nacional de CórdobaGoogle Scholar
  40. Honfi AI, Quarín CL, Valls JF (1990) Estudios cariológicos en gramíneas sudamericanas. Darwiniana 30:87–94Google Scholar
  41. Jordan WC, Courtney WM, Neigel EJ (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckwoods (Lemnaceae). Amer J Bot 83:430–439CrossRefGoogle Scholar
  42. Kelchner S, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Molec Phylogen Evol 8:385–397CrossRefGoogle Scholar
  43. Morrone O, Zuloaga FO (1989) Sobre la posición sistemática de Brachiaria glabrinodis (Poaceae: paniceae). Darwiniana 29:261–268Google Scholar
  44. Morrone O, Filgueiras T, Zuloaga FO, Dubcovsky J (1993) Revision of Anthaenantiopsis (Poaceae: Panicoideae: Paniceae). Syst Bot 18:434–453CrossRefGoogle Scholar
  45. Morrone O, Vega A, Zuloaga FO (1996) Revisión de las especies del género Paspalum L. (Poaceae: Panicoideae: Paniceae), grupo Dissecta (s.str.). Candollea 51:103–138Google Scholar
  46. Morrone O, Denham SS, Aliscioni SS, Zuloaga FO (2000) Revisión de las especies de Paspalum (Panicoideae: paniceae), subgénero Anachyris. Candollea 55:105–135Google Scholar
  47. Morrone O, Denham SS, Zuloaga FO (2004) Revisión taxonómica del género Paspalum grupo Eriantha (Poaceae, Panicoideae, Paniceae). Ann Missouri Bot Gard 91:225–246Google Scholar
  48. Morrone O, Escobar A, Zuloaga FO (2006) Chromosome studies in American Panicoideae (Poaceae). Ann Missouri Bot Gard 93:647–657CrossRefGoogle Scholar
  49. Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, Zuloaga FO (2012) Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics 28:333–356CrossRefGoogle Scholar
  50. Nash GV (1912) Poaceae: tribe 5. Paniceae. North Am Flor 17(2):144–196Google Scholar
  51. Nees Von Esenbeck CGD (1850) Gramineae Herbarii Lindleyani. Hooker’s J Bot Kew Gard Misc 2:97–105Google Scholar
  52. Nelson G (1979) Cladistics analysis and synthesis: principles and definitions, with a historical note on Adanson`s “Families des plants” (1763-1764). Syst Zool 28:1–21CrossRefGoogle Scholar
  53. Nixon KC, Carpenter JM (1996) On simultaneous analysis. Cladistics 12:221–241CrossRefGoogle Scholar
  54. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518CrossRefGoogle Scholar
  55. Norrmann GA, Quarín CL, Burson BL (1989) Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Heredity 80:24–28Google Scholar
  56. Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481CrossRefGoogle Scholar
  57. Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Cáceres ME, Pupilli F (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot. doi:10.1093aobmct152 PubMedCentralGoogle Scholar
  58. Parodi LR (1946) Nuevo género de gramíneas de Brasil. Bol Soc Argent Bot 1:293–297Google Scholar
  59. Peñaloza APS, Valls JF, dos Santos S, Pozzobon MT, Rua GH (2008) Unusual chromosome numbers in Paspalum L. (Poaceae: Paniceae) from Brazil. Genet Molec Res 7:399–406CrossRefGoogle Scholar
  60. Petersen G, Seberg O (1997) Phylogenetic análisis of the Triticeae (Poaceae) based on rpoA sequence data. Molec Phylogen Evol 7:217–230CrossRefGoogle Scholar
  61. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818PubMedCrossRefGoogle Scholar
  62. Pozzobon MT, Valls JF, dos Santos S (2000) Contagens cromossômicas em espécies brasileiras de Paspalum L. (Gramineae). Acta Bot Brasil 14:151–162Google Scholar
  63. Pozzobon MT, Machado AC, Vaio M, Valls JF, Peñaloza APS, dos Santos S, Côrtes AL, Rua GH (2008) Cytogenetic analyses in Paspalum L. reveal new diploid species and accessions. Ciência Rural Santa Maria 38:1292–1299CrossRefGoogle Scholar
  64. Quarín CL (1974) Relaciones filogenéticas entre Paspalum almum Chase y P. hexastachyum Parodi (Gramineae). Bonplandia (Corrientes) 3:115–127Google Scholar
  65. Quarín CL (1992) The nature of apomixes and its origin in panicoid grasses. Apomixis Newsletter 5:8–15Google Scholar
  66. Quarin CL, Burson BL (1991) Cytology of sexual and apomictic Paspalum species. Cytologia 56:223–228CrossRefGoogle Scholar
  67. Quarín CL, Hanna WW (1980) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75CrossRefGoogle Scholar
  68. Quarín CL, Lombardo EP (1986) Niveles de ploidía y distribución geográfica de Paspalum quadrifarium (Gramineae). Mendeliana 7:101–107Google Scholar
  69. Quarín CL, Norrmann GA (1987) Relaciones entre el número de cromosomas, su comportamiento en la meiosis y el sistema reproductivo del género Paspalum. Anales del IV Congreso Latinoamericano de Botánica. Bogotá Colombia 3:25–35Google Scholar
  70. Quarín CL, Norrmann GA (1990) Interspecific hybrids between five Paspalum species. Bot Gaz 15:366–369CrossRefGoogle Scholar
  71. Quarín CL, Pozzobon MT, Valls JF (1996) Cytology and reproductive behavior of diploid, tetraploid and hexaploid germplasm accessions of a wild forage grass: Paspalum compressifolium. Euphytica 90:345–349CrossRefGoogle Scholar
  72. Quarín CL, Norrmann GA, Espinoza F (1998) Evidence for autoploidy in apomictic Paspalum rufum. Hereditas 129:119–124CrossRefGoogle Scholar
  73. Quarín CL, Espinoza F, Martínez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sexual Pl Reprod 1:243–249CrossRefGoogle Scholar
  74. Rambaut A, Drummond AJ (2007) Tracer v1.4 available from http://beast.bio.ed.ac.uk/Tracer
  75. Reeder JR (1984) Chromosome number reports LXXXII. Taxon 33:126–134Google Scholar
  76. Rohlf FJ (1982) Consensus indices for comparing classifications. Math Biosci 59:131–144CrossRefGoogle Scholar
  77. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  78. Rua GH, Aliscioni SS (2002) A morphology-based cladistic analysis of Paspalum sect. Pectinata. Syst Bot 27:489–501Google Scholar
  79. Rua GH, Valls JFM (2012) On the taxonomic status of the genus Thrasyopsis (Poaceae, Panicoideae, Paspaleae): new combinations in Paspalum. Phytotaxa 73:60–66Google Scholar
  80. Rua GH, Speranza PR, Vaio M, Arakaki M (2010) A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Pl Syst Evol 288:227–243CrossRefGoogle Scholar
  81. Scataglini MA, Giussani LM, Denham SS, Zuloaga FO, Morrone O (2007) Una aproximación a la filogenia de Paspalum (Poaceae, Panicoideae, Paniceae) utilizando tres marcadores de ADN de cloroplasto. Darwiniana 45:124–125Google Scholar
  82. Sede SA, Escobar A, Morrone O, Zuloaga FO (2010) Chromosome studies in American Paniceae (Poaceae, Panicoideae). Ann Missouri Bot Gard 97:128–138CrossRefGoogle Scholar
  83. Selva SB (1976) Some preliminary observations on a new basic number in Paspalum convexum (Gramineae). Canad J Bot 54:385–394CrossRefGoogle Scholar
  84. Siena LA, Sartor ME, Espinoza F, Quarín CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sexual Pl Reprod 21:205–215CrossRefGoogle Scholar
  85. Souza-Chies TT, Essi L, Rua GH, Valls JF, Miz R (2006) A preliminary approach to the phylogeny of the genus Paspalum (Poaceae). Genetica 126:15–32PubMedCrossRefGoogle Scholar
  86. Stebbins GL (1941) Apomixis in the angiosperms. Bot Rev (Lancaster) 7:507–542CrossRefGoogle Scholar
  87. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Publishers, Ltd, LondonGoogle Scholar
  88. Stein J, Quarín CL, Martinez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191PubMedCrossRefGoogle Scholar
  89. Vaio M, Speranza P, Valls JF, Guerra G, Mazzella C (2005) Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Ann Bot (Oxford) 96:191–200CrossRefGoogle Scholar
  90. Watson L, Dallwitz MJ (1992 onwards). The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. Version: 23rd April 2010. http://delta-intkey.com
  91. Zuloaga FO, Morrone O (2005) Revisión de las especies de Paspalum para América del Sur Austral. (Argentina, Bolivia, sur de Brasil, Chile, Paraguay y Uruguay). Monogr Syst Bot Missouri Bot Gard 102:1–297Google Scholar
  92. Zuloaga FO, Morrone O, Dubcovsky J (1989) Exomorphological, anatomical and cytological studies in Panicum validum (Poaceae. Panicoideae: Paniceae): its systematic position within the genus. Syst Bot 14:220–230CrossRefGoogle Scholar
  93. Zuloaga FO, Pensiero JF, Morrone O (2004) Systematics of Paspalum grupo Notata (Poaceae–Panicoideae–Paniceae). Syst Bot Monogr 71:1–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • María A. Scataglini
    • 1
  • Fernando O. Zuloaga
    • 1
  • Liliana M. Giussani
    • 1
  • Silvia S. Denham
    • 1
  • Osvaldo Morrone
    • 1
  1. 1.Instituto de Botánica DarwinionSan IsidroArgentina

Personalised recommendations