Advertisement

Plant Systematics and Evolution

, Volume 299, Issue 9, pp 1599–1636 | Cite as

Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution

  • Louis P. Ronse De CraeneEmail author
Review

Abstract

The Caryophyllales have the highest diversity in androecial patterns among flowering plants with stamen numbers ranging from 1 up to 4,000. Thanks to the recent progress in reconstructing the phylogeny of core Caryophyllales, questions of floral evolution, such as the origin and diversification of the androecium, can be readdressed. Caryophyllales are unique among core eudicots in sharing an androecial ring meristem or platform with centrifugal development of stamens and petals. Stamens are basically arranged in two whorls and evolution within the clade depends on the shift of either the antesepalous or the alternisepalous whorls to an upper position on the ring meristem and the reduction of the other. Four main developmental phenomena are responsible for the high diversity in androecial patterns: (1) the sterilisation of the outermost stamens through a division of common primordia; (2) the secondary addition of stamens by a centrifugal initiation of supernumerary stamens superimposed on a lower stamen number; (3) the pairwise displacement of alternisepalous stamens to the middle of the outer sepals and their potential fusion, or as part of a pluristaminate androecium; (4) the inversed sequence, reduction and loss of antesepalous stamens. Shifts in stamen numbers depend on pressures of the calyx and carpels and changes in the number of the latter. These patterns are expressed differently in the three main evolutionary lines of core Caryophyllales and are systematically relevant: (1) A basal grade of Caryophyllales, culminating with Caryophyllaceae, Amaranthaceae, Stegnosperma and Limeum, has the antesepalous stamens initiated in upper position on the ring meristem, and alternisepalous stamens are preferentially reduced. Among the antesepalous whorl there is a progressive loss of stamens following a sequence inversed to sepal initiation. Petaloid staminodes are formed by the radial division of outer stamens. (2) The raphide-clade and Molluginaceae are characterized by alternisepalous stamens in upper position on the ring meristem, with a trend to secondary stamen multiplication, and loss of antesepalous stamens. (3) The Portulacineae share the pattern of the raphide clade, but some taxa show shifts to an upper position on the ring meristem of either antesepalous or alternisepalous stamens, linked with secondary multiplications and reduction of either whorl. Different floral characters are plotted on a recent cladogram of Caryophyllales. The data show a consistent correlation between shifting carpel and stamen numbers independent of perianth evolution. Comparative data suggest that the basic androecium of Caryophyllales consists of two whorls of five stamens, linked with an absence of petals, and the evolution of the androecium is a combination of reductions and secondary multiplications of stamens with a highly predictive systematic value.

Keywords

Androecial ring meristem Carpel number Centrifugal development Perianth differentiation Petaloids Phylogeny Stamen increase Stamen reduction Staminodes 

Notes

Acknowledgments

I thank Patricia Dos Santos and Sam Brockington for earlier discussions and for providing data used in this review. I am also grateful to Kester Bull and Sam Brockington for critical comments on an earlier version of the manuscript. Frieda Christie’s technical assistance with the SEM is acknowledged. I also thank the two reviewers for their helpful comments.

References

  1. Adamson RS (1958a) The South African species of Aizoaceae IV. Mollugo, Pharnaceum, Coelanthum and Hypertelis. J S Afr Bot 24:11–65Google Scholar
  2. Adamson RS (1958b) The South African species of Aizoaceae V. Corbichonia. J S Afr Bot 24:67–69Google Scholar
  3. Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495PubMedGoogle Scholar
  4. Applequist WL, Wallace RS (2001) Expanded circumscription of Didiereaceae and its subdivision into three subfamilies. Adansonia sér 3(25):13–16Google Scholar
  5. Baillon H (1862) Observations sur les affinités du genre Barbeuia. Adansonia 3:312–317Google Scholar
  6. Baillon H (1886) Organisation floral du Githago. Bull Mens Soc Linn Paris 1(76):603–604Google Scholar
  7. Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 161–197Google Scholar
  8. Batenburg LH, Moeliono BM (1982) Oligomery and vasculature in the androecium of Mollugo nudicaulis Lam. (Molluginaceae). Acta Bot Neerl 31:215–220Google Scholar
  9. Batenburg LH, Geluk PCW, Moeliono BM (1984) Morphology and vascular system of the inflorescences of Mollugo nudicaulis Lam. and Hypertelis bowkeriana Sond. (Molluginaceae). Acta Bot Neerl 33:101–110Google Scholar
  10. Bedell HG (1980) A taxonomic and morphological re-evaluation of Stegnospermaceae (Caryophyllales). Syst Bot 5:419–431Google Scholar
  11. Behnke H-D (1976) Ultrastructure of sieve-element plastids in Caryophyllales (Centrospermae), evidence for the delimitation and classification of the order. Pl Syst Evol 126:31–54Google Scholar
  12. Behnke H-D (1993) Further studies of the sieve-element plastids of the Caryophyllales including Barbeuia, Corrigiola, Lyallia, Microtea, Sarcobatus, and Telephium. Pl Syst Evol 186:231–243Google Scholar
  13. Behnke H-D, Pop L, Sivarajan VV (1983a) Sieve-element plastids of Caryophylales: additional investigations with special reference to the Caryophyllaceae and Molluginaceae. Pl Syst Evol 142:109–115Google Scholar
  14. Behnke H-D, Mabry TJ, Neumann P, Barthlott W (1983b) Ultrastructural, micromorphological and phytochemical evidence for a “central position” of Macarthuria (Molluginaceae) within the Caryophyllales. Pl Syst Evol 143:151–161Google Scholar
  15. Bittrich V (1993a) Introduction to Centrospermae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 13–19Google Scholar
  16. Bittrich V (1993b) Achatocarpaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 35–36Google Scholar
  17. Bittrich V (1993c) Caryophyllaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 206–236Google Scholar
  18. Bittrich V (1993d) Halophytaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 320–321Google Scholar
  19. Bittrich V, Kühn U (1993) Nyctaginaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 473–486Google Scholar
  20. Bogle AL (1970) The genera of Molluginaceae and Aizoaceae in the southeastern United States. J Arnold Arbor 51:431–462Google Scholar
  21. Boke NH (1963) Anatomy and development of the flower and fruit of Pereskia pititache. Amer J Bot 50:843–858Google Scholar
  22. Boke NH (1966) Ontogeny and structure of the flower and fruit of Pereskia aculeata. Amer J Bot 53:534–542Google Scholar
  23. Brockington SF, Roolse A, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 170:627–643Google Scholar
  24. Brockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE (2011) Complex pigment evolution in the Caryophyllales. New Phytol 190:854–864PubMedGoogle Scholar
  25. Brockington SF, Rudall PJ, Frohlich MW, Oppenheimer DG, Soltis PS, Soltis DE (2012) ‘Living stones’ reveal alternative petal identity programs within the core eudicots. Plant J 69:193–203PubMedGoogle Scholar
  26. Brockington S, Dos Santos P, Glover B, Ronse De Craene LP (2013) Evolution of the androecium in Caryophyllales: insights from a paraphyletic Molluginaceae. Amer J Bot 100:1757–1778Google Scholar
  27. Brown GK, Varadarajan GS (1985) Studies in Caryophyllales I: re-evaluation of classification of Phytolaccaceae s.l. Syst Bot 10:49–63Google Scholar
  28. Buxbaum F (1961) Vorlaüfige Untersuchungen über Umfang, systematische Stellung und Gliederung der Caryophyllales (Centrospermae). Beitr Biol Pflanz 36:1–56Google Scholar
  29. Carlquist S (2001) Wood and stem anatomy of Rhabdodendraceae is consistent with placement in Caryophyllales sensu lato. IAWA J 22:171–181Google Scholar
  30. Carolin RC (1993) Portulacaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 544–555Google Scholar
  31. Christin PL, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF (2011) Complex evolutionary transitions and the significance of C3–C4 intermediate forms of photosynthesis in Molluginaceae. Evolution 65:643–660PubMedGoogle Scholar
  32. Clement J, Mabry T (1996) Pigment evolution in the Caryophyllales: a systematic overview. Botanica Acta 109:360–367Google Scholar
  33. Cohn F (1913) Beiträge zur Kenntnis der Chenopodiaceen. Flora 106:51–89Google Scholar
  34. Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Amer J Bot 89:132–144Google Scholar
  35. De Laet J, Clinckemaillie D, Jansen S, Smets E (1995) Floral ontogeny in the Plumbaginaceae. J Plant Res 108:289–304Google Scholar
  36. Dickison WC, Miller RB (1993) Morphology and anatomy of the Malagasy genus Physena (Physenaceae), with a discussion of the relationships of the genus. Bull Mus Natl Hist Nat Paris IV, sect B, Adansonia 15:85–105Google Scholar
  37. Donnison IS, Francis D (2002) Models of floral pattern in detached flowers of Silene coeli-rosa (L) Godr. (Caryophyllaceae). Bot J Linn Soc 140:229–235Google Scholar
  38. Dos Santos P, Brockington S, Glover B, Ronse De Craene LP (2012) Micromorphological evidence for androecium origin of Claytonia (Montiaceae) petaloids. Modern Phytomorphology 1:23–25Google Scholar
  39. Downie SR, Palmer JD (1994) A chloroplast DNA phylogeny of the Caryophyllales based on structural and inverted repeat restriction site variation. Syst Bot 19:236–252Google Scholar
  40. Downie SR, Katz-Downie DS, Cho K-J (1997) Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF 2280 homolog sequences. Amer J Bot 84:253–273Google Scholar
  41. Eckardt T (1967) Zur Blütenmorphologie von Dysphania plantaginella F. v.M. Phytomorphology 17:165–172Google Scholar
  42. Eckardt T (1974) Vom Blütenbau der Centrospermen-Gattung Lophiocarpus Turcz. Phyton (Austria) 16:13–27Google Scholar
  43. Eckardt T (1976) Classical morphological features of Centrospermous families. Pl Syst Evol 126:5–25Google Scholar
  44. Eckert G (1966) Entwicklungsgeschichtliche und blütenanatomische Untersuchungen zum Problem der Obdiplostemonie. Bot Jahrb Syst 85:523–604Google Scholar
  45. Eichler AW (1878) Blütendiagramme 2. Wilhelm Engelmann, LeipzigGoogle Scholar
  46. Endress PK (2003) Morphology and angiosperm systematics in the molecular era. Bot Rev 68:545–570Google Scholar
  47. Endress PK (2010) Flower structure and trends in evolution in eudicots and their major subclades. Ann Missouri Bot Gard 97:541–583Google Scholar
  48. Endress M, Bittrich V (1993) Molluginaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 419–426Google Scholar
  49. Endress PK, Matthews ML (2006) Elaborate petals and staminodes in eudicots: diversity, fuhction, and evolution. Org Div Evol 6:257–293Google Scholar
  50. Endress PK, Matthews ML (2012) Progress and problems in the assessment of flower morphology in higher-level systematics. Pl Syst Evol 298:257–276Google Scholar
  51. Erbar C, Leins P (2006) Floral ontogeny and systematic position of the Didiereaceae. Pl Syst Evol 261:165–185Google Scholar
  52. Fay MF, Cameron KM, Prance GT, Lledó MD, Chase MW (1997) Familial relationships of Rhabdodendron (Rhabdodendraceae): plastid rbcL sequences indicate a caryophyllid placement. Kew Bull 52:923–932Google Scholar
  53. Fiedler H (1910) Beiträge zur Kenntnis der Nyctaginaceen. Bot Jahrb Syst 44:572–605Google Scholar
  54. Fior S, Karis PO, Casazza G, Minuto L, Sala F (2006) Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA ITS sequences. Amer J Bot 93:399–411Google Scholar
  55. Franz E (1908) Beiträge zur Kenntnis der Portulacaceen und Basellaceen. Bot Jahrb Syst 42, Beibl 97:1–28Google Scholar
  56. Friedrich H- C (1956) Studien über die natürliche Verwandtschaft der Plumbaginales und Centrospermae. Phyton (Austria) 6:220–263Google Scholar
  57. Greenberg AK, Donoghue MJ (2011) Molecular systematics and character evolution in Caryophyllaceae. Taxon 60:1637–1652Google Scholar
  58. Guaglianone R (1987) Phytolaccaceae. In: Burkart A (ed) Flora illustrada de entre Rios (Argentina) Tome VI, part III. Buenos Aires, Coleccion Cientifica del I.N.T.A., pp 209–225Google Scholar
  59. Hakki MI (1972) Blütenmorphologische und embryologische Untersuchungen an Chenopodium capitatum und Chenopodium foliosum sowie weiteren Chenopodiaceae. Bot Jahrb Syst 92:178–330Google Scholar
  60. Harbaugh DT, Nepokroeff M, Rabeler RK, McNeill J, Zimmer EA, Wagner WL (2010) A new lineage-based classification of the family Caryophyllaceae. Int J Plant Sci 171:185–198Google Scholar
  61. Hardenack S, Ye D, Saedler H, Grant S (1994) Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant White Campion. Plant Cell 6:1775–1787PubMedGoogle Scholar
  62. Harris EM, Horn JW, Wagner WL (2012) Floral development of the divergent endemic Hawaiian genus Schiedea (Caryophyllaceae), with special emphasis on the floral nectaries. Taxon 61:576–591Google Scholar
  63. Hartmann HEK (1993) Aizoaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 37–69Google Scholar
  64. Haskell G (1949) Variation in the number of stamens in the common chickweed. J Genetics 49:291–301Google Scholar
  65. Hassan NMS, Meve U, Liede-Schumann S (2005) Seed coat morphology of Aizoaceae-Sesuvioideae, Gisekiaceae and Molluginaceae and its systematic significance. Bot J Linn Soc 148:189–206Google Scholar
  66. Hauman L (1951) Aizoaceae. Flore du Congo Belge et du Ruanda-Urundi. In: Spermatophytes, vol 2 Brussels: 100–117Google Scholar
  67. Hershkowitz MA (1993) Revised circuscriptions and subgeneric taxonomies of Calandrinia and Montiopsis (Portulacaceae) with notes on phylogeny of the Portulacaceous alliance. Ann Missouri Bot Gard 80:333–365Google Scholar
  68. Hofmann U (1973) Centrospermen-Studien 6: morphologische Untersuchungen zur Umgrenzung und Gliederung der Aizoaceen. Bot Jahrb Syst 93:247–324Google Scholar
  69. Hofmann U (1977) Centrospermen-Studien 9: Die Stellung von Stegnosperma innerhalb der Centrospermen. Ber Deutsch Bot Ges 90:39–52Google Scholar
  70. Hofmann U (1993). Gisekia: Blütenmorphologie und Entwicklungsgeschichte, systematische Folgerungen. In: Fürnkranz D, Schantl H (eds) Kurzfassungen 11 Symposium Morphologie, Anatomie und Systematik Salzburg 1993, p 17Google Scholar
  71. Hofmann U (1994) Flower morphology and ontogeny. In: Behnke H-D, Mabry TD (eds) Caryophyllales. Evolution and Systematics, Springer Verlag, Berlin, pp 123–166Google Scholar
  72. Ihlenfeldt HD (1960) Entwicklungsgeschichtliche, morphologische und systematische Untersuchungen an Mesembryanthemen. Feddes Repert 63:1–104Google Scholar
  73. Joshi AC (1932) Dédoublement of stamens in Achyranthes aspera. Linn. J Indian Bot Soc 11:335–339Google Scholar
  74. Joshi AC, Sita Rama Rao V (1934) Vascular anatomy of the flowers of four Nyctaginaceae. J Indian Bot Soc 13:169–186Google Scholar
  75. Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2002) Plant systematics: a phylogenetic approach, 2nd edn. Sinauer, Sunderland 576 ppGoogle Scholar
  76. Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986Google Scholar
  77. Klak C, Khunou A, Reeves G, Henderson T (2003) A phylogenetic hypothesis for the Aizoaceae (Caryophyllales) based on four plastid DNA regions. Amer J Bot 90:1433–1445Google Scholar
  78. Kühn U (1993) Chenopodiaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 253–281Google Scholar
  79. Lacroix C, Sattler R (1988) Phyllotaxis theories and tepal-stamen superposition in Basella rubra. Amer J Bot 75:906–917Google Scholar
  80. Lamb-Frye AS, Kron KA (2003) Phylogeny and character evolution in Polygonaceae. Syst Bot 21:17–29Google Scholar
  81. Leins P, Erbar C (1994) Putative origin and relationships of the order from the viewpoint of developmental flower morphology. In: Behnke H-D, Mabry TD (eds) Caryophyllales evolution and systematics. Springer, Berlin, pp 303–316Google Scholar
  82. Leins P, Erbar C (2003) Floral developmental features and molecular data in plant systematics. In: Stuessy TF, Mayer V, Hörandl E (eds) Deep morphology: towards a renaissance of morphology in plant systematics. ARG Gantner Verlag, Liechtenstein, pp 81–105Google Scholar
  83. Leins P, Schwitalla S (1985) Studien an Cactaceen-Blüten I. Einige Bermerkungen zur Blütenentwicklung von Pereskia. Beitr Biol Pflanz 60:313–323Google Scholar
  84. Leins P, Walter A, Erbar C (2001) Eine morphologische Interpretation der Caryophyllaceen-Kronblätter. Bot Jahrb Syst 123:355–367Google Scholar
  85. Lepschi BJ (1996) A taxonomic revision of Macarthuria (Molluginaceae) in Western Australia. Nuytsia 11:37–54Google Scholar
  86. Lüders H (1907) Systematische Untersuchungen über die Caryophyllaceen mit einfachem Diagramm. Bot Jahrb Syst 40 Beibl. 91:1–-37Google Scholar
  87. Luo Y, Bian F-H, Luo Y-B (2012) Different patterns of floral ontogeny in dimorphic flowers of Pseudostellaria heterophylla (Caryophyllaceae). Int J Plant Sci 173:150–160Google Scholar
  88. Lyndon RF (1978) Flower development in Silene: morphology and sequence of initiation of primordia. Ann Bot 42:1343–1348Google Scholar
  89. Maddison DR, Maddison WP (2003) MacClade 4, Version 4.3. Sinauer, Sunderland, MassGoogle Scholar
  90. Meimberg H, Dittrich P, Bringmann G, Schlauer J, Heubl G (2000) Molecular phlogeny of Caryophyllidae s.l. based on MatK sequences with special emphasis on carnivorous taxa. Plant Biol 2:218–228Google Scholar
  91. Milby TH (1980) Studies in the floral anatomy of Claytonia. Amer J Bot 67:1046–1050Google Scholar
  92. Morton CM, Karol KG, Chase MW (1997) Taxonomic affinities of Physena (Physenaceae) and Asteropeia (Theaceae). Bot Rev 63:231–239Google Scholar
  93. Müller K (1908) Beiträge zur Systematik der Aizoaceen. Bot Jahrb Syst 42, Beibl 97:54–72Google Scholar
  94. Nyffeler R, Eggli U (2010) Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59:227–240Google Scholar
  95. Olvera H, Flores Smets E, Vrijdaghs A (2008) Floral and inflorescence morphology and ontogeny in Beta vulgaris, with special emphasis on the ovary position. Ann Bot 102:643–651PubMedGoogle Scholar
  96. Payer JB (1857) Traité d’organogénie comparée de la fleur: 748 p. 154 Pl. Victor Masson, ParisGoogle Scholar
  97. Philipson WR (1993) Hectorellaceae. In: Kubitzki K, Rohwer J, Bittrich V (eds) Families and genera of vascular plants, vol 2. Springer, Berlin, pp 331–334Google Scholar
  98. Pozner R, Cocucci A (2006) Floral structure, anther development, and pollen dispersal of Halophytum ameghinoi (Halophytaceae). Int J Plant Sci 167:1091–1098Google Scholar
  99. Prance GT (2005) Rhabdodendraceae. In: Kubitzki K, Bayer C (eds) Families and genera of vascular plants vol 5. Springer, Berlin, pp 339–341Google Scholar
  100. Puff C, Weber A (1976) Contributions to the morphology, anatomy and karyology of Rhabdodendron, and a reconsideration of the systematic position of the Rhabdodendraceae. Pl Syst Evol 125:195–222Google Scholar
  101. Rohweder O (1965) Centrospermen-Studien 2: Entwicklung und morphologische Deutung des Gynöciums bei Phytolacca. Bot Jahrb Syst 84:509–526Google Scholar
  102. Rohweder O (1967) Centrospermen-Studien 3: Blütenentwicklung und Blütenbau bei Silenoideen (Caryophyllaceae). Bot Jahrb Syst 86:130–185Google Scholar
  103. Rohweder O (1970) Centrospermen-Studien 4: Morphology und Anatomie der Blüten, Früchte und Samen bei Alsinoideen und Paronychioideen s.lat. (Caryophyllaceae). Bot Jahrb Syst 90:201–271Google Scholar
  104. Rohweder O, Huber K (1974) Centrospermen-Studien 7. Beobachtungen und Anmerkungen zur Morphologie und Entwicklungsgeschichte einiger Nyctaginaceen. Bot Jahrb Syst 94:327–359Google Scholar
  105. Rohwer J (1993) Phytolaccaceae. In: Kubitzki K, Rohwer J, Bittrich V (eds) Families and genera of vascular plants, vol 2. Springer, Berlin, pp 506–515Google Scholar
  106. Ronse De Craene LP (1990) Morphological studies in Tamaricales I: floral ontogeny and anatomy of Reaumuria vermiculata L. Beitr Biol Pflanz 65:181–203Google Scholar
  107. Ronse De Craene LP (2004) Floral development of Berberidopsis corallina: a crucial link in the evolution of flowers in the core eudicots. Ann Bot 94:1–11Google Scholar
  108. Ronse De Craene LP (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann Bot 100:621–630PubMedGoogle Scholar
  109. Ronse De Craene LP (2008) Homology and evolution of petals in the core eudicots. Syst Bot 33:301–325Google Scholar
  110. Ronse De Craene LP (2010) Floral diagrams. An aid to understanding flower morphology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  111. Ronse De Craene LP, Brockington S (2013) Origin and evolution of petals in the angiosperms. Pl Ecol Evol 146:5–25Google Scholar
  112. Ronse De Craene LP, Smets E (1991) The floral ontogeny of some members of the Phytolaccaceae (subfamily Rivinoideae) with a discussion of the evolution of the androecium in the Rivinoideae. Biol Jb Dodonaea 59:77–99Google Scholar
  113. Ronse De Craene LP, Smets E (1992) Complex polyandry in the Magnoliatae: definition, distribution and systematic value. Nord J Bot 12:621–649Google Scholar
  114. Ronse De Craene LP, Smets E (1994) Merosity: definition, origin and taxonomic significance. Pl Syst Evol 191:83–104Google Scholar
  115. Ronse De Craene LP, Smets E (1995) The distribution and systematic relevance of the androecial character oligomery. Bot J Linn Soc 118:193–247Google Scholar
  116. Ronse De Craene LP, Smets E (1998) Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. In: Owens SJ, Rudall PJ (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 85–112Google Scholar
  117. Ronse De Craene LP, Smets EF (2001) Staminodes: their morphological and evolutionary significance. Bot Rev 67:351–402Google Scholar
  118. Ronse De Craene LP, Stuppy W (2010) Floral development and anatomy of Aextoxicon punctatum (Aextoxicaceae-Berberidopsidales)—an enigmatic tree at the base of core eudicots. Int J Plant Sci 171:244–257Google Scholar
  119. Ronse De Craene LP, Vanvinckenroye P, Smets EF (1997) A study of the floral morphological diversity in Phytolacca (Phytolaccaceae) based on early floral ontogeny. Int J Plant Sci 158:56–72Google Scholar
  120. Ronse De Craene LP, Smets EF, Vanvinckenroye P (1998) Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae. J Plant Res 111:25–43Google Scholar
  121. Ronse De Craene LP, Volgin SA, Smets EF (1999) The floral development of Pleuropetalum darwinii, an anomalous member of the Amaranthaceae. Flora 194:189–199Google Scholar
  122. Ross R (1982) Initiation of stamens, carpels and receptacle in the Cactaceae. Amer J Bot 69:369–379Google Scholar
  123. Rudall PJ (2013) Identifying key features in the origin and early diversification of angiosperms. In: Ambrose BA, Purugganan MD (eds) The evolution of plant form. Ann Plant Rev 45:163–188Google Scholar
  124. Rudall PJ, Bateman R (2010) Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili. Phil Trans R Soc B 365:397–409PubMedGoogle Scholar
  125. Sanchez A, Schuster TM, Kron KA (2009) A large-scale phylogeny of Polygonaceae based on molecular data. Int J Plant Sci 170:1044–1055Google Scholar
  126. Sattler R (1973) Organogenesis of flowers, a photographic text-atlas. University of Toronto Press, Toronto & BuffaloGoogle Scholar
  127. Sattler R, Perlin L (1982) Floral development of Bougainvillea spectabilis Willd., Boerhaavia diffusa L. and Mirabilis jalapa L. (Nyctaginaceae). Bot J Linn Soc 84:161–182Google Scholar
  128. Saunders ER (1937) Floral morphology, a new outlook, with special reference to the interpretation of the gynoecium I. Heffer & Sons, CambridgeGoogle Scholar
  129. Schäferhoff B, Müller K, Borsch T (2009) Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family. Willdenowia 39:209–228Google Scholar
  130. Schatz GE, Lowry II PP, Wolf A-E (1999) Endemic families of Madagascar IV. A synoptic revision of Asteropeia (Asteropeiaceae). Adansonia ser. 3, 21:255–268Google Scholar
  131. Schölch M-F (1963) Die systematische Stellung der Didiereaceen im lichte neuer Untersuchungen über ihren Blütenbereich. Ber Deutsch Bot Ges 76: 49–55Google Scholar
  132. Sharma HP (1954) Studies in the order Centrospermales I. Vascular anatomy of the flower of certain species of the Portulacaceae. J Indian Bot Soc 33:98–111Google Scholar
  133. Sharma HP (1963) Studies in the order Centrospermales II. Vascular anatomy of the flower of certain species of the Molluginaceae. J Indian Bot Soc 42:19–32Google Scholar
  134. Sherry RA, Eckard KJ, Lord EM (1993) Flower development in dioecious Spinacia oleracea (Chenopodiaceae). Amer J Bot 80:283–291Google Scholar
  135. Smissen RD, Garnock-Jones PJ (2002) Relationships, classification and evolution of Scleranthus (Caryophyllaceae) as inferred from analysis of morphological characters. Bot J Linn Soc 140:15–29Google Scholar
  136. Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner mA, Sytsma KJ, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Amer J Bot 98:704–730Google Scholar
  137. Southwest Environmental Information Network (SEINet 2006) Stegnospermaceae. http://swbiodiversity.org/seinet/imagelib/imgdetails.php?imgid=254787
  138. Stafford HA (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci 101:91–98Google Scholar
  139. Stannard BL (1988) Phytolaccaceae. In: Flora Zambesiaca, vol 9. http://apps.kew.org/efloras/namedetail.do?flora=fz&taxon=6698&nameid=17005
  140. Sterk AA (1970) Reduction of the androecium in Spergularia marina (Caryophyllaceae). Acta Bot Neerl 19:488–494Google Scholar
  141. Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/
  142. Thomson BF (1942) The floral morphology of the Caryophyllaceae. Amer J Bot 29:333–349Google Scholar
  143. Townsend CC (1993) Amaranthaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 70–91Google Scholar
  144. Vanvinckenroye P, Smets E (1996) Floral ontogeny of five species of Talinum and of related taxa (Portulacaceae). J Plant Res 109:387–402Google Scholar
  145. Vanvinckenroye P, Smets E (1999) Floral ontogeny of Anacampseros subg. Anacampseros sect. Anacampseros (Portulacaceae). Syst Geogr Pl 68:173–194Google Scholar
  146. Vanvinckenroye P, Cresens E, Ronse De Craene LP, Smets EF (1993) A comparative floral developmental study in Pisonia, Bougainvillea and Mirabilis (Nyctaginaceae) with special emphasis on the gynoecium and floral nectaries. Bull Jard Bot Nat Belg 62:69–96Google Scholar
  147. Vanvinckenroye P, Ronse De Craene L, Smets E (1996) The floral development of Monococcus echinophorus (Phytolaccaceae). Can J Bot 75:1941–1950Google Scholar
  148. Wagner WL, Harris EM (2000) A unique Hawaiian Schiedea (Caryophyllaceae: Alsinioideae) with only five fertile stamens. Amer J Bot 87:153–160Google Scholar
  149. Walter H (1906) Die Diagramme der Phytolaccaceen. Bot Jahrb Syst 37, Beibl 85:1–57Google Scholar
  150. Williams SE, Albert VA, Chase MW (1994) Relationships of Droseraceae: a cladistic analysis of rbcL sequence and morphological data. Amer J Bot 81:1027–1037Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Royal Botanic Garden EdinburghEdinburghUK

Personalised recommendations