Plant Systematics and Evolution

, Volume 300, Issue 1, pp 75–89 | Cite as

Taxonomic status and phylogeny of Veratrum section Veratrum (Melanthiaceae) in Korea and Japan based on chloroplast and nuclear sequence data

  • Jin Ohk Kim
  • Minoru N. Tamura
  • Shizuka Fuse
  • Nam Sook LeeEmail author
Original Article


Veratrum section Veratrum comprises eight species in Korea and Japan: V. alpestre, V. dahuricum, V. dolichopetalum, V. grandiflorum var. maximum, V. oxysepalum, V. patulum, V. stamineum var. micranthum, and V. stamineum var. stamineum. However, species delimitation and taxonomic treatments have long been controversial due to their highly variable vegetative and floral morphology. We conducted maximum parsimony (MP) and Bayesian inference (BI) based on a total of 4,856 base pairs of nrDNA ITS and cpDNA coding and noncoding regions (matK, psbA-trnH, rpL16, and trnS-G) to re-examine the taxonomic status and phylogenetic relationships within Veratrum sect. Veratrum. The MP and BI trees were poorly resolved among species within Veratrum sect. Veratrum in Korea and Japan. Veratrum stamineum, which has outward spreading, exerted stamens beyond the tepals, diverged first within Veratrum and the remaining species, which have straight shorter stamens compared to the tepals, formed a monophyletic group with poor species delimitation and phylogenetic relationships among them. The incongruent phylogenetic position of V. grandiflorum var. maximum between ITS and cpDNA (it shares its most recent common ancestor with poorly resolved sect. Veratrum species in ITS, whereas it is sister to V. stamineum in cpDNA) suggested that it represents possible ancient hybrid origin between V. stamineum and V. oxysepalum. Thus, in this study we elevated the taxonomic status of V. grandiflorum var. maximum to the species rank, V. maximum. V. alpestre, which was described as a new species by Nakai in 1937, has identical ribotype and cpDNA haplotype of V. oxysepalum and its morphological variations are within the range of V. oxysepalum. Therefore, we suggest that V. alpestre should be synomized with V. oxysepalum. A further study using fast evolving nuclear and chloroplast regions is required to resolve the phylogenetic relationships among species within Veratrum sect. Veratrum.


Veratrum Section Veratrum Melanthiaceae Molecular phylogeny Veratrum maximum 



This study was supported as a joint research project under the Korea–Japan Basic Scientific Cooperation Program of the Korea Science and Engineering Foundation (Grant KOSEF-2005-0517-1) and the Japanese Society for the Promotion of Science (JSPS). We thank Dr. Mark S. Roh of the USDA and Holden Arboretum for samples, and Dr. Seung-Chul Kim of SungKyunKwan University for critical reading.


  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, BudapestGoogle Scholar
  2. APG [Angiosperm Phylogeny Group] III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linean Soc 161:105–121CrossRefGoogle Scholar
  3. Baker JG (1879) A synopsis of Colchicaceae and the aberrant tribes of Liliaceae. Bot J Linean Soc 17:405–510Google Scholar
  4. Brummitt RK (2011) Report of the nomenclature committee for vascular plants: 63. Taxon 60(4):1202–1210Google Scholar
  5. Chen X, Takahashi H (2000) Veratrum. In: Wu ZY, Raven PH (eds) Flora of China, vol. 24. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, pp 82–85Google Scholar
  6. Chung TH (1956) Korean flora. Sinjisa, SeoulGoogle Scholar
  7. Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14:733–740PubMedCrossRefGoogle Scholar
  8. Dahlgren RMT, Clifford HT, Yeo PF (1985) The Families of the Monocotyledons. Springer, BerlinCrossRefGoogle Scholar
  9. Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Am J Bot 86(6):887–899PubMedCrossRefGoogle Scholar
  10. Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the glass family (Poaceae). PNAS 89:7722–7726PubMedCrossRefGoogle Scholar
  11. Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  12. Fuse S, Tamura MN (2000) A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol 2:415–427CrossRefGoogle Scholar
  13. Fuse S, Lee NS, Tamura MN (2004) Biosystematic studies on the genus Heloniopsis (Melanthiaceae) II. Two new species from Korea based on morphological and molecular evidence. Taxon 53:949–958CrossRefGoogle Scholar
  14. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523PubMedGoogle Scholar
  15. Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  16. Inoue K, Yukawa T (2002) A new species of Yoania (Orchidaceae) from southern Nagano, central Japan. Acta Phytotax Geobot 53:107–114Google Scholar
  17. Kato H, Yamada K, Ueda M, Takahashi H, Kawano S (1996) Chloroplast DNA variations in Veratrum L. (Liliaceae) based on restriction site analysis. Acta Phytotax Geobot 47(2):203–211Google Scholar
  18. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498CrossRefGoogle Scholar
  19. Kikuchi R, Park JH, Takahashi H, Maki M (2010) Disjunct distribution of chloroplast DNA haplotypes in the understory perennial Veratrum album ssp. oxysepalum (Melanthiaceae) in Japan as a result of ancient introgression. New Phytol 188:879–891PubMedCrossRefGoogle Scholar
  20. Kim KJ, Lee HL (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19:104–113PubMedGoogle Scholar
  21. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  22. Kitamura S (1964) Veratrum. In: Kitamura S, Murata G, Koyama T (eds) Coloured illustrations of herbaceous plants of Japan, vol III. Hoikusha, Osaka, pp 148–150Google Scholar
  23. Lee NS (1984) A taxonomic study of Korean Veratrum. Kor J Plant Taxon 15:49–65Google Scholar
  24. Lee WC (1996a) Lineamenta Florae Korea. Academybook, SeoulGoogle Scholar
  25. Lee YN (1996b) Flora of Korea. Gyohaksa, Seoul, pp 154–165Google Scholar
  26. Liao WJ, Yuan YM, Zhang DY (2007) Biogeography and evolution of flower color in Veratrum (Melanthiaceae) through inference of a phylogeny based in multiple DNA markers. Plant Syst Evol 267:177–190CrossRefGoogle Scholar
  27. Linnaeus C (1753) Species Plantarum. vol. 1 and 2. Stockholm, Holmiae, Impensis L. SalviiGoogle Scholar
  28. Loesener O (1926) Studien über die Gattung Veratrum und ihre Verbreitung. Verhandlungen des botanischen Vereins der Provinz Brandenburg 68:105–166Google Scholar
  29. Loesener O (1927) Übersicht über Arten der Gattung Veratrum, Teil I. Repertorium Specierum Novarum Regni Vegetabilis 24:61–72CrossRefGoogle Scholar
  30. Loesener O (1928) Übersicht über Arten der Gattung Veratrum, Schluss. Repertorium Specierum Novarum Regni Vegetabilis 25:1–10CrossRefGoogle Scholar
  31. Mathew B (1989) A review of Veratrum. Plantsman 11:35–61Google Scholar
  32. Nakai T (1937a) Species generic Veratri in regione Manshurico-Koreano sponte nascentes. Rep Inst Sci Res Manchoukuo I(9):325–344Google Scholar
  33. Nakai T (1937b) Japanese species of Veratrum (I). J Jpn Bot 13:631–645Google Scholar
  34. Nakai T (1937c) Japanese species of Veratrum (II). J Jpn Bot 13:701–713Google Scholar
  35. Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  36. Ohwi J (1953) Flora of Japan. Shibundo, TokyoGoogle Scholar
  37. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  38. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136PubMedCrossRefGoogle Scholar
  39. Satake Y (1942) Veratrum stamineum Maximowicz var. micranthum Satake (var. nov.). J Jpn Bot 18:661Google Scholar
  40. Satake Y (1982) Veratrum. In: Satake Y, Ohwi J, Kitamura S, Watari S, Tominari T (eds) Wild flowers of Japan, herbaceous plants, vol 1. Heibonsha, Tokyo, pp 28–29Google Scholar
  41. Savolainen V, Fay MF, Albach DC, Backlund A, Bank M, Cameron KM, Johnson SA, Lledó MD, Pintaud JC, Powell M, Sheahan MC, Soltis DE, Soltis PS, Weston P, Whitten WM, Wurdack KJ, Chase MW (2000) Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull 55:257–309CrossRefGoogle Scholar
  42. Schönenberger J, Conti E (2003) Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Phynchocalycaceae and Alzateaceae (Myrtales). Am J Bot 90(2):293–309PubMedCrossRefGoogle Scholar
  43. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92(1):142–166PubMedCrossRefGoogle Scholar
  44. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  45. Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315PubMedCrossRefGoogle Scholar
  46. Steele KP, Vilgalys R, Rehner S, Mishler BD (1990) Phylogenetic analyses of Polemoniaceae using cp-DNA sequence data. Fourth International Congress of Systematic and Evolutionary Biology, BaltimoreGoogle Scholar
  47. Swofford DL (2002) PAUP: Phylogenetic Analysis Using Parsimony, Vers. 4.0. Sinauer, Sunderland, MA, USAGoogle Scholar
  48. Takahashi H (1997) Veratrum. In: Shimizu T (ed) Flora of Nagano Prefecture. The Shinano Mainichi Shimbun, Nagano, pp 1411–1413Google Scholar
  49. Tamura MN (1998) Melanthiaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol III., Flowering plants: monocotyledonsSpringer, Berlin, pp 369–380Google Scholar
  50. Tamura MN, Fuse S, Azuma H, Hasebe M (2004a) Biosystematic studies on the family Tofieldiaceae I. Phylogeny and circumscription of the family inferred from DNA sequences of matK and rbcL. Plant Biol 6:562–567PubMedCrossRefGoogle Scholar
  51. Tamura MN, Yamashita J, Fuse S, Haraguchi M (2004b) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J Plant Res 117:109–120PubMedCrossRefGoogle Scholar
  52. Tamura MN, Azuma H, Yamashita J, Fuse S, Ishii T (2010) Biosystematic studies on the family Tofieldiaceae II. Phylogeny of species of Tofieldia and Triantha inferred from plastid and nuclear DNA sequences. Acta Phytotax Geobot 60:131–140Google Scholar
  53. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  54. Yamashita J, Tamura MN (2000) Molecular phylogeny of the Convallariaceae (Asparagales). In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 387–400Google Scholar
  55. Yamashita J, Tamura MN (2004) Phylogenetic analyses and chromosome evolution in Convallarieae (Ruscaceae sensu lato), with some taxonomic treatments. J Plant Res 117:363–370PubMedCrossRefGoogle Scholar
  56. Zharkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329PubMedCrossRefGoogle Scholar
  57. Zimmerman JH (1958) A Monograph of Veratrum. Ph. D. thesis. University of Wisconsin, Madison, WI, USAGoogle Scholar
  58. Zomlefer WB, Whitten WM, Williams NH, Judd WS (2001) Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. Am J Bot 88:1657–1669PubMedCrossRefGoogle Scholar
  59. Zomlefer WB, Whitten WM, Williams NH, Judd WS (2003) An overview of Veratrum s.l. (Liliales: Melanthiaceae) and an infrageneric phylogeny based on ITS sequence data. Syst Bot 28:250–269Google Scholar
  60. Zomlefer WB, Judd WS, Gandhi KN (2010) (1928) Proposal to conserve the name Veratrum against Melanthium (Melanthiaceae). Taxon 59(2):644–645Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Jin Ohk Kim
    • 1
  • Minoru N. Tamura
    • 2
  • Shizuka Fuse
    • 3
  • Nam Sook Lee
    • 4
    Email author
  1. 1.Division of EcoScienceEwha Womans UniversitySeoulKorea
  2. 2.Department of Botany, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Museum of Nature and Human ActivitiesHyogoJapan
  4. 4.Department of Life ScienceEwha Womans UniversitySeoulKorea

Personalised recommendations