Plant Systematics and Evolution

, Volume 299, Issue 9, pp 1781–1792 | Cite as

Transgressive character expression in hybrid zones between the native invasives Tithonia tubaeformis and Tithonia rotundifolia (Asteraceae) in Mexico

  • Alfredo López-Caamal
  • Patricia Mussali-Galante
  • Leticia Valencia-Cuevas
  • Jaime Jiménez Ramírez
  • Karla Vega Flores
  • Efraín Tovar-Sánchez
Original Article


Natural hybridization frequently promotes gene introgression among closely related species in sympatric populations, producing complex patterns of morphological variation. Therefore, a detailed understanding of the dynamics of interspecific gene flow and its morphological patterns is of widespread interest. We tested if introgressive hybridization promotes an increase in transgressive characters in comparison with the parental species. A sunflower species complex occurring in Mexico formed by two native invasive species, Tithonia tubaeformis and Tithonia rotundifolia, was analyzed using 46 morphological characters (leaf, flower and fruit) in five hybrid zones (N = 150 individuals) and two pure sites for each parental species (N = 80 individuals). In general, T. tubaeformis differed significantly from T. rotundifolia in all the examined characters, except six foliar and one inflorescence character. Morphological characters support the hypothesis of hybridization in this complex, even though both species remain morphological distinct in mixed stands. Individual hybrids appear to be a mosaic of parent-like (24.8 % of traits), intermediate (26.1 %) and transgressive (37.8 %) phenotypes (the remaining 11.3 % of the traits did not differ significantly from both parental species). Our results suggest that individuals from the same parental species were more similar among themselves than to putative hybrids, indicating occasional hybridization with segregation in hybrid types or backcrossing to parents. Evidence indicates a unidirectional pattern of gene flow toward T. rotundifolia.


Hybridization Introgression Morphology Sunflower 



We thank Mauricio Mora Jarvio, Leonardo Beltrán, Paulette Arellano Vignettes, Tatiana Cervantes Ramírez, César Martínez Becerril, Guadalupe Rangel Altamirano, L. Márquez Valdemar, and Elgar Castillo Mendoza for technical assistance. This research was supported by grants from CONACYT-Mexico (61275) to E. T. S.

Supplementary material

606_2013_834_MOESM1_ESM.doc (486 kb)
Supplementary material 1 (DOC 485 kb)
606_2013_834_MOESM2_ESM.jpg (783 kb)
Supplementary material 2 (JPEG 784 kb)
606_2013_834_MOESM3_ESM.jpg (845 kb)
Supplementary material 3 (JPEG 846 kb)
606_2013_834_MOESM4_ESM.jpg (809 kb)
Supplementary material 4 (JPEG 810 kb)
606_2013_834_MOESM5_ESM.jpg (773 kb)
Supplementary material 5 (JPEG 773 kb)
606_2013_834_MOESM6_ESM.jpg (792 kb)
Supplementary material 6 (JPEG 792 kb)
606_2013_834_MOESM7_ESM.jpg (811 kb)
Supplementary material 7(JPEG 812 kb)
606_2013_834_MOESM8_ESM.jpg (774 kb)
Supplementary material 8 (JPEG 774 kb)


  1. Agrawal A (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326PubMedCrossRefGoogle Scholar
  2. Anderson E (1949) Introgressive hybridization. Wiley, New YorkGoogle Scholar
  3. Anderson E (1953) Introgressive hybridization. Biol Rev 28:280–307CrossRefGoogle Scholar
  4. Aparicio MS, Castro-Ramírez AE, León CJL, Ishiki IM (2003) Entomofauna asociada a maíz de temporal con diferentes manejos de malezas en Chiapas, México. Manejo Integrado de Plagas y Agroecología 70:65–73Google Scholar
  5. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  6. Blumler MA (2003) Introgression as a spatial phenomenon. Phys Geogr 24:414–432CrossRefGoogle Scholar
  7. Brennan CA, Bridle JR, Wang AL, Hiscock SJ, Abbott RJ (2009) Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol 183:702–717PubMedCrossRefGoogle Scholar
  8. Brochmann C, Borgen L, Stabbetorp OE (2000) Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae). Plant Syst Evol 220:77–92CrossRefGoogle Scholar
  9. Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petrea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Ann Bot-London 85:325–333CrossRefGoogle Scholar
  10. Buerkle CA, Morris RJ, Asmussen MA, Rieseberg LH (2000) The likelihood of homoploid hybrid speciation. Heredity 84:441–451PubMedCrossRefGoogle Scholar
  11. Caraway V, Carr GD, Morden CW (2001) Assessment of hybridization and introgression in lava-colonizing Hawaiian Dubautia (Asteraceae: Madiinae) using RAPD markers. Am J Bot 88:694–16881CrossRefGoogle Scholar
  12. Carney SE, Gardner KA, Rieseberg LH (2000) Evolutionary changes over the fifty-year history of a hybrid population of sunflowers (Helianthus). Evolution 54:462–474PubMedGoogle Scholar
  13. Cattell MV, Karl SA (2004) Genetics and morphology in a Borrichia frutescens and B. arborescens (Asteraceae) hybrid zone. Am J Bot 91:1757–1766PubMedCrossRefGoogle Scholar
  14. Daehler C, Strong DR (1997) Hybridization between introduced smooth cordgrass (Spartina alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California, USA. Am J Bot 84:607–611PubMedCrossRefGoogle Scholar
  15. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050PubMedCrossRefGoogle Scholar
  16. Freeman DC, Turner WA, McArthur ED, Graham JH (1991) Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). Am J Bot 78:805–815CrossRefGoogle Scholar
  17. García AN, Chaila S, González Navarro H, de la Vega M, Raimondo JG (2000) Competencia específica de Tithonia tubaeformis [Jack] Cass. en cultivos de soja (Glycine max (L.) Merril) y poroto negro (Phaseolus vulgaris L.). Revista Agronómica del Noroeste Argentino 30:19–30Google Scholar
  18. González-Rodríguez A, Arias DM, Valencia S, Oyama K (2004) Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. Am J Bot 91:401–409PubMedCrossRefGoogle Scholar
  19. Gray AJ, Marshall DF, Raybould AF (1991) A century of evolution in Spartina anglica. Adv Ecol Res 21:1–62Google Scholar
  20. Hardig TM, Brunsfeld SJ, Fritz RS, Morgan M, Orians CM (2000) Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Mol Ecol 9:9–24PubMedCrossRefGoogle Scholar
  21. Harrison RG (1990) Hybrid zones: windows on evolutionary process. Oxford Surv Evol Biol 7:69–128Google Scholar
  22. Heiser CB (1947) Hybridization between the sunflower species Helianthus annus and H. petiolaris. Evolution 1:249–262CrossRefGoogle Scholar
  23. Heiser CB (1951) Hybridization in the annual sunflowers: Helianthus annuus × H. debilis var. cucumerifolius. Evolution 5:42–51CrossRefGoogle Scholar
  24. Hejda M, Pysek P, Jarosik V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403Google Scholar
  25. James JK, Abbott RJ (2005) Recent, allopatric, homoploid hybrid speciation: the origin of Senecio squalidus (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 59:2533–2547PubMedGoogle Scholar
  26. Jian O, Changyi LU, O’Toole DK (2008) A risk assessment system for alien plant bio-invasion in Xiamen, China. J Environ Sci 20:989–997Google Scholar
  27. Jörgensen S, Mauricio R (2005) Hybridization as a source of evolutionary novelty: leaf shape in a Hawaiian composite. Genetica 123:171–179PubMedCrossRefGoogle Scholar
  28. Kim SC, Rieseberg LH (1999) Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153:965–977PubMedGoogle Scholar
  29. Kleinschmit JRG, Bacilieri R, Kremer A, Roloff A (1995) Comparison of morphological and genetic traits of penduculate oak (Quercus robur (L.)) and sessile oak (Quercus petrea (Matt.)) Liebl). Silvae Genet 44:5–6Google Scholar
  30. La Duke JC (1982) Revision of Tithonia. Rhodora 84:453–522Google Scholar
  31. Lane MA (1996) Pollination biology of Compositae. In: Caligari PDS, Hind DJN (eds) Compositae: Biology and utilization. Kew: Proceedings of the International Compositae Conference, pp 61–80Google Scholar
  32. Larenas-Parada G, Viana ML, Chafatinos T, Escobar NE (2004) Relación suelo-especie invasora (Tithonia tubaeformis) en el sistema ribereño del río Arenales, Salta, Argentina. Ecol Austral 14:19–29Google Scholar
  33. Levin DA (2000) The origin, expansion, and demise of plant species. Oxford University Press, New YorkGoogle Scholar
  34. Levin DA, Francisco-Ortega J (1996) Hybridization and the extinction of rare plant species. Conserv Biol 10:10–16CrossRefGoogle Scholar
  35. Lexer C, Randell RA, Rieseber LH (2003) Experimental hybridization as a tool for studying selection in the wild. Ecology 84:1688–1699CrossRefGoogle Scholar
  36. MacDonald IAW, Reaser JK, Bright C, Neville LE, Howard GW, Murphy SJ, Preston G (eds) (2003) Invasive alien species in southern Africa: national reports and directory of resources. Global Invasive Species Programme, Cape Town, South AfricaGoogle Scholar
  37. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237PubMedCrossRefGoogle Scholar
  38. Mito T, Uesugi T (2004) Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Global Environ Res 8:171–191Google Scholar
  39. Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. J Biogeogr 34:2100–2114CrossRefGoogle Scholar
  40. Muoghalu JI, Chuba DK (2005) Seed germination and reproductive strategies of Tithonia diversifolia (Hemsl.) Gray and Tithonia rotundifolia (P. M.) Blake. Appl Ecol Env Res 3:39–46Google Scholar
  41. Nikolova L, Michail C, Gerald S (2004) Interspecific hybridization between H. pumilus Nutt. and H. annuus L. and their potential for cultivated sunflower improvement. Helia 27:151–162Google Scholar
  42. Olorode O, Hassan SO, Olabinjo OA, Raimi IO (2011) Tithonia (Asteraceae) in Nigeria. Ife J Sci 13:1–10Google Scholar
  43. Ramirez-Rodríguez R, Tovar-Sánchez E, Jiménez JR, Vega KF, Rodríguez V (2011) Introgressive hybridization between Brahea dulcis and B. nitida (Arecaceae) in Mexico: evidence from morphological and PCR-RAPD patterns. Botany 89:545–557Google Scholar
  44. Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Progr Phys Geog 30:409–431Google Scholar
  45. Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624CrossRefGoogle Scholar
  46. Rieseberg LH, Ellstrand NC (1993) What can morphological and molecular markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241Google Scholar
  47. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation, and speciation. Heredity 83:363–372PubMedCrossRefGoogle Scholar
  48. Rieseberg LH, Raymond O, Rosenthal DM (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216PubMedCrossRefGoogle Scholar
  49. Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165PubMedCrossRefGoogle Scholar
  50. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105CrossRefGoogle Scholar
  51. Schwarzbach AE, Donovan LA, Rieseberg LH (2001) Transgressive character expression in a hybrid sunflower species. Am J Bot 88:270–277PubMedCrossRefGoogle Scholar
  52. Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501CrossRefGoogle Scholar
  53. Stat Soft (2007) STATISTICA (data analysis software system), version 8.0.
  54. Tovar-Sánchez E, Oyama K (2004) Natural hybridization between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Am J Bot 91:1352–1363PubMedCrossRefGoogle Scholar
  55. Tovar-Sánchez E, Rodríguez-Carmona F, Aguilar-Mendiola V, Mussali-Galante P, López-Caamal A, Valencia-Cuevas L (2012) Molecular evidence of hybridization in two native invasive species: Tithonia tubaeformis and T. rotundifolia (Asteraceae) in Mexico. Plant Syst Evol 298:1947–1959CrossRefGoogle Scholar
  56. Valéry L, Fritz H, Lefeuvre J, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351Google Scholar
  57. Vitousek PM, D’antonio M, Loope L, Rejmánek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zeal J Ecol 21:1–16Google Scholar
  58. Wilson P (1992) On inferring hybridity from morphological intermediacy. Taxon 41:11–23CrossRefGoogle Scholar
  59. Zar JH (2010) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar
  60. Ziller SR, Reaser JK, Neville LE, Brandt K (eds) (2005) Invasive alien species in South America: national directory of resources. Global Invasive Species Programme, Cape Town, South AfricaGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Alfredo López-Caamal
    • 1
    • 2
  • Patricia Mussali-Galante
    • 3
  • Leticia Valencia-Cuevas
    • 2
  • Jaime Jiménez Ramírez
    • 4
  • Karla Vega Flores
    • 4
  • Efraín Tovar-Sánchez
    • 2
  1. 1.Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoDelegación CoyoacánMexico, DF
  2. 2.Departamento de Sistemática y Evolución, Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexicoMexico, DF
  4. 4.Departamento de Biología Comparada, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoDelegación CoyoacánMexico, DF

Personalised recommendations